ARTICLE IN PRESS

Appl. Comput. Harmon. Anal. $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet$

Contents lists available at ScienceDirect

ELSEVIER

Applied and Computational Harmonic Analysis

www.elsevier.com/locate/acha

Low rank matrix recovery from rank one measurements

Richard Kueng^a, Holger Rauhut^b, Ulrich Terstiege^{b,*}

^a Institute for Physics & FDM, University of Freiburg, Rheinstraße 10, 79104 Freiburg, Germany
^b Lehrstuhl C f
 ür Mathematik (Analysis), RWTH Aachen University, Pontdriesch 10, 52062 Aachen, Germany

ARTICLE INFO

Article history: Received 28 October 2014 Received in revised form 7 July 2015 Accepted 27 July 2015 Available online xxxx Communicated by Thomas Strohmer

MSC: 94A20 94A12 60B20 90C25 81P50 Keywords: Low rank matrix recovery Ownerhum state tomorrow

Quantum state tomography Phase retrieval Convex optimization Complex projective designs Random measurements Matrix completion

ABSTRACT

We study the recovery of Hermitian low rank matrices $X \in \mathbb{C}^{n \times n}$ from undersampled measurements via nuclear norm minimization. We consider the particular scenario where the measurements are Frobenius inner products with random rank-one matrices of the form $a_j a_j^*$ for some measurement vectors a_1, \ldots, a_m , i.e., the measurements are given by $b_j = \operatorname{tr}(Xa_ja_j^*)$. The case where the matrix $X = xx^*$ to be recovered is of rank one reduces to the problem of phaseless estimation (from measurements $b_j = |\langle x, a_j \rangle|^2$) via the PhaseLift approach, which has been introduced recently. We derive bounds for the number m of measurements that guarantee successful uniform recovery of Hermitian rank r matrices, either for the vectors a_j , $j = 1, \ldots, m$, being chosen independently at random according to a standard Gaussian distribution, or a_j being sampled independently from an (approximate) complex projective t-design with t = 4. In the Gaussian case, we require $m \geq Crn$ measurements, while in the case of 4-designs we need $m > Crn \log(n)$. Our results are uniform in the sense that one random choice of the measurement vectors a_i guarantees recovery of all rank r-matrices simultaneously with high probability. Moreover, we prove robustness of recovery under perturbation of the measurements by noise. The result for approximate 4-designs generalizes and improves a recent bound on phase retrieval due to Gross, Krahmer and Kueng. In addition, it has applications in quantum state tomography. Our proofs employ the so-called bowling scheme which is based on recent ideas by Mendelson and Koltchinskii.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. The phase retrieval problem

The problem of retrieving a complex signal from measurements that are ignorant towards phases is abundant in many different areas of science, such as X-ray crystallography [44,62], astronomy [33] diffraction

terstiege@mathc.rwth-aachen.de (U. Terstiege).

 $\label{eq:http://dx.doi.org/10.1016/j.acha.2015.07.007 \\ 1063-5203/© 2015 Elsevier Inc. All rights reserved.$

Please cite this article in press as: R. Kueng et al., Low rank matrix recovery from rank one measurements, Appl. Comput. Harmon. Anal. (2015), http://dx.doi.org/10.1016/j.acha.2015.07.007

^{*} Corresponding author at: Lehrstuhl C für Mathematik (Analysis), RWTH Aachen University, Germany. *E-mail addresses:* richard.kueng@physik.uni-freiburg.de (R. Kueng), rauhut@mathc.rwth-aachen.de (H. Rauhut),

 $\mathbf{2}$

ARTICLE IN PRESS

imaging [72,62] and more [8,12,81]. Mathematically formulated, the problem consists of recovering a complex signal (vector) $x \in \mathbb{C}^n$ from measurements of the form

$$|\langle a_j, x \rangle|^2 = b_j \quad \text{for} \quad j = 1, \dots, m, \tag{1}$$

where $a_1, \ldots, a_m \in \mathbb{C}^n$ are sampling vectors. This ill-posed inverse problem is called *phase retrieval* and has attracted considerable interest over the last few decades. An important feature of this problem is that the signal x enters the measurement process (1) quadratically. This leads to a non-linear inverse problem. Classical approaches to numerically solving it include alternating projection methods [34,38]. However, these methods usually require extra constraints and a careful selection of parameters, and in particular, no rigorous convergence or recovery guarantees seem to be available.

As Balan et al. pointed out in [7] that this apparent obstacle of having nonlinear measurements can be overcome by noting that the measurement process – while quadratic in x – is linear in the outer product xx^* :

$$|\langle a_j, x \rangle|^2 = \operatorname{tr} \left(a_j a_j^* x x^* \right).$$

This "lifts" the problem to a matrix space of dimension n^2 , where it becomes linear and can be solved explicitly, provided that the number of measurements m is at least n^2 [7]. However, there is additional structure present, namely the matrix $X = xx^*$ is guaranteed to have rank one. This connects the phase retrieval problem to the young but already extensive field of *low-rank matrix recovery*. Indeed, it is just a special case of low-rank matrix recovery, where both the signal $X = xx^*$ and the measurement matrices $A_j = a_j a_j^*$ are constrained to be proportional to rank-one projectors. This observation led to the *PhaseLift* approach to the phase retrieval problem [13,19].

It should be noted, however, that such a reduction to a low rank matrix recovery problem is just one possibility to retrieve phases. Other approaches use polarization identities [2] or alternate projections [65]. Another approach is quasi-linear compressed sensing [31]. Yet another recent method is phase retrieval via Wirtinger flow [15].

1.2. Low rank matrix recovery

Building on ideas of compressive sensing [20,30,37], low rank matrix recovery aims to reconstruct a matrix of low rank from incomplete linear measurements via efficient algorithms [68]. For our purposes we concentrate on Hermitian matrices $X \in \mathbb{C}^{n \times n}$ and consider measurements of the form

$$\operatorname{tr}(XA_j) = b_j \quad j = 1, \dots, m \tag{2}$$

where the $A_j \in \mathbb{C}^{n \times n}$ are some Hermitian matrices. For notational simplicity, we define the measurement operator

$$\mathcal{A}: \mathcal{H}_n \to \mathbb{R}^m \quad Z \mapsto \sum_{j=1}^m \operatorname{tr} \left(Z A_j \right) e_j,$$

where e_1, \ldots, e_m denotes the standard basis in \mathbb{R}^m . This summarizes an entire (possibly noisy) measurement process via

$$b = \mathcal{A}(X) + \epsilon. \tag{3}$$

Here $b = (b_1, \ldots, b_m)^T$ contains all measurement outcomes and $\epsilon \in \mathbb{R}^m$ denotes additive noise. Low rank matrix recovery can be regarded as a non-commutative version of compressive sensing. Indeed, the structural

Please cite this article in press as: R. Kueng et al., Low rank matrix recovery from rank one measurements, Appl. Comput. Harmon. Anal. (2015), http://dx.doi.org/10.1016/j.acha.2015.07.007

Download English Version:

https://daneshyari.com/en/article/5773547

Download Persian Version:

https://daneshyari.com/article/5773547

Daneshyari.com