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We study the recovery of Hermitian low rank matrices X ∈ Cn×n from undersampled 
measurements via nuclear norm minimization. We consider the particular scenario 
where the measurements are Frobenius inner products with random rank-one 
matrices of the form aja∗

j for some measurement vectors a1, . . . , am, i.e., the 
measurements are given by bj = tr(Xaja∗

j ). The case where the matrix X = xx∗

to be recovered is of rank one reduces to the problem of phaseless estimation 
(from measurements bj = |〈x, aj〉|2) via the PhaseLift approach, which has been 
introduced recently. We derive bounds for the number m of measurements that 
guarantee successful uniform recovery of Hermitian rank r matrices, either for 
the vectors aj , j = 1, . . . , m, being chosen independently at random according 
to a standard Gaussian distribution, or aj being sampled independently from 
an (approximate) complex projective t-design with t = 4. In the Gaussian case, 
we require m ≥ Crn measurements, while in the case of 4-designs we need 
m ≥ Crn log(n). Our results are uniform in the sense that one random choice of the 
measurement vectors aj guarantees recovery of all rank r-matrices simultaneously 
with high probability. Moreover, we prove robustness of recovery under perturbation 
of the measurements by noise. The result for approximate 4-designs generalizes and 
improves a recent bound on phase retrieval due to Gross, Krahmer and Kueng. 
In addition, it has applications in quantum state tomography. Our proofs employ 
the so-called bowling scheme which is based on recent ideas by Mendelson and 
Koltchinskii.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. The phase retrieval problem

The problem of retrieving a complex signal from measurements that are ignorant towards phases is 
abundant in many different areas of science, such as X-ray crystallography [44,62], astronomy [33] diffraction 
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imaging [72,62] and more [8,12,81]. Mathematically formulated, the problem consists of recovering a complex 
signal (vector) x ∈ C

n from measurements of the form

|〈aj , x〉|2 = bj for j = 1, . . . ,m, (1)

where a1, . . . , am ∈ C
n are sampling vectors. This ill-posed inverse problem is called phase retrieval and 

has attracted considerable interest over the last few decades. An important feature of this problem is that 
the signal x enters the measurement process (1) quadratically. This leads to a non-linear inverse problem. 
Classical approaches to numerically solving it include alternating projection methods [34,38]. However, 
these methods usually require extra constraints and a careful selection of parameters, and in particular, no 
rigorous convergence or recovery guarantees seem to be available.

As Balan et al. pointed out in [7] that this apparent obstacle of having nonlinear measurements can be 
overcome by noting that the measurement process – while quadratic in x – is linear in the outer product 
xx∗:

|〈aj , x〉|2 = tr
(
aja

∗
jxx

∗) .
This “lifts” the problem to a matrix space of dimension n2, where it becomes linear and can be solved 
explicitly, provided that the number of measurements m is at least n2 [7]. However, there is additional 
structure present, namely the matrix X = xx∗ is guaranteed to have rank one. This connects the phase 
retrieval problem to the young but already extensive field of low-rank matrix recovery. Indeed, it is just a 
special case of low-rank matrix recovery, where both the signal X = xx∗ and the measurement matrices 
Aj = aja

∗
j are constrained to be proportional to rank-one projectors. This observation led to the PhaseLift

approach to the phase retrieval problem [13,19].
It should be noted, however, that such a reduction to a low rank matrix recovery problem is just one 

possibility to retrieve phases. Other approaches use polarization identities [2] or alternate projections [65]. 
Another approach is quasi-linear compressed sensing [31]. Yet another recent method is phase retrieval via 
Wirtinger flow [15].

1.2. Low rank matrix recovery

Building on ideas of compressive sensing [20,30,37], low rank matrix recovery aims to reconstruct a 
matrix of low rank from incomplete linear measurements via efficient algorithms [68]. For our purposes we 
concentrate on Hermitian matrices X ∈ C

n×n and consider measurements of the form

tr (XAj) = bj j = 1, . . . ,m (2)

where the Aj ∈ C
n×n are some Hermitian matrices. For notational simplicity, we define the measurement 

operator

A : Hn → R
m Z �→

m∑
j=1

tr (ZAj) ej ,

where e1, . . . , em denotes the standard basis in Rm. This summarizes an entire (possibly noisy) measurement 
process via

b = A(X) + ε. (3)

Here b = (b1, . . . , bm)T contains all measurement outcomes and ε ∈ R
m denotes additive noise. Low rank 

matrix recovery can be regarded as a non-commutative version of compressive sensing. Indeed, the structural 
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