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In this short note we propose a simple two-stage sparse phase retrieval strategy 
that uses a near-optimal number of measurements, and is both computationally 
efficient and robust to measurement noise. In addition, the proposed strategy is 
fairly general, allowing for a large number of new measurement constructions and 
recovery algorithms to be designed with minimal effort.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Herein we consider the phase retrieval problem of reconstructing a given vector x ∈ C
N from noisy 

magnitude measurements of the form

bi := |〈pi,x〉|2 + ni, (1)

where pi ∈ C
N is a measurement vector, and ni ∈ R represents arbitrary measurement noise, for 

i = 1, . . . , M . In particular, we focus on the setting where the dimension N is either very large, or else 
the number of measurements allowed, M , is otherwise severely restricted. In either case, our inability to 
gather the M = O(N) measurements required for the recovery of x in general [20] forces us to consider 
the possibility of approximating x using only M � N magnitude measurements, if possible. This is the 
situation motivating the compressive phase retrieval problem (see, e.g., [30,31,26,24,34,15,32,35]), in which 
one attempts to accurately approximate x ∈ C

N using only M = o(N) magnitude measurements (1) under 
the assumption that x is either sparse, or compressible.
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One question regarding the compressive phase retrieval problem is how many measurements are needed to 
allow for stable reconstruction of x. Clearly, compressive phase retrieval requires at least as many measure-
ments as the corresponding classical compressive sensing problem since one is given less information. Hence, 
stable compressive phase retrieval requires at least O(s log(N/s)) magnitude measurements3 – but can it be 
done with M = O(s log(N/s)) measurements? It is shown in [15] that stable compressive phase retrieval is 
indeed achievable with M = O(s log(N/s)) measurements for real x if the entries of pi are real independent 
and identically distributed (i.i.d.) Gaussians. However, this question was unresolved in the complex case. In 
this note we extend the result to the complex case. Furthermore, we do so in a constructive way by providing 
a computational procedure which can stably reconstruct complex x using only O(s log(N/s)) magnitude 
measurements.

Unlike previous sparse phase retrieval approaches, we propose a generic two-stage solution technique 
consisting of (i) using the phase retrieval technique of one’s choice to recover compressive sensing measure-
ments of x, Cx ∈ C

m, followed by (ii) utilizing the compressive sensing method of one’s choice in order to 
approximate x from the recovered measurements Cx. As we shall see, the generic nature of the proposed 
sparse phase retrieval procedure not only allows for a relatively large number of measurement matrices and 
recovery algorithms to be used, but also allows robust recovery guarantees for the sparse phase retrieval 
problem to be proven in the complex setting essentially “for free” by combining existing robust recovery 
results from the compressive sensing literature with robust recovery results for the standard phase retrieval 
setting. As a result, we are able to show that O(s log(N/s)) magnitude measurements suffice in order to re-
cover a large class of compressible vectors with the same quality of error guarantee as commonly achieved in 
the compressive sensing literature. Finally, numerical experiments demonstrate that the proposed approach 
is also both efficient and robust in practice.

2. Background

In this section we briefly recall selected results from the existing literature on compressive sensing [14,17]
and phase retrieval [3,2,12,11,1,16]. Let ‖x‖0 denote the number of nonzero entries in a given x ∈ C

N , and 

‖x‖p denote the standard �p-norm of x for all p ≥ 1, i.e., ‖x‖p :=
(∑N

n=1 |xn|p
)1/p

for all x ∈ C
N .

2.1. Compressive sensing

Compressive sensing methods deal with the construction of an m × N measurement matrix, C, with 
m minimized as much as possible subject to the constraint that an associated approximation algorithm, 
ΔC : Cm → C

N , can still accurately approximate any given vector x ∈ C
N . More precisely, compressive 

sensing methods allow one to minimize m, the number of rows in C, as a function of s and N such that

‖ΔC (Cx) − x‖p ≤ Cp,q · s
1
p− 1

q

(
inf

z∈CN ,‖z‖0≤s
‖x − z‖q

)
(2)

holds for all x ∈ C
N in various fixed �p,�q norms, 1 ≤ q ≤ p ≤ 2, for an absolute constant Cp,q ∈ R (e.g., see 

[13,17]). Note that this implies that x will be recovered exactly if it contains only s nonzero entries. Similarly, 
x will be accurately approximated by ΔC (Cx) any time its �q-norm is dominated by its largest s entries.

There are a wide variety of measurement matrices C ∈ C
m×N with m = O(s log(N/s)) that have asso-

ciated approximation algorithms, ΔC, which are computationally efficient, numerically robust, and able to 
achieve error guarantees of the form (2) for all x ∈ C

N . For example, this is true of “most” random matrices 
C ∈ C

m×N with i.i.d. subgaussian random entries [4,17]. Similarly, one may construct such a C ∈ C
m×N with 

3 See, e.g., Chapter 10 of [17] concerning the minimal number of measurements required for stable compressive sensing.
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