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Multinomial logistic regression and other classification schemes used in conjunction 
with convolutional networks (convnets) were designed largely before the rise 
of the now standard coupling with convnets, stochastic gradient descent, and 
backpropagation. In the specific application to supervised learning for convnets, 
a simple scale-invariant classification stage is more robust than multinomial logistic 
regression, appears to result in somewhat lower errors on several standard test sets, 
has similar computational costs, and features precise control over the actual rate of 
learning. “Scale-invariant” means that multiplying the input values by any nonzero 
real number leaves the output unchanged.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Classification of a vector of real numbers (called “feature activations”) into one of several discrete cat-
egories is well established and well studied, with solutions such as the ubiquitous multinomial logistic 
regression reviewed, for example, by [2]. However, conventional classifiers may not couple best with gen-
eration of the feature activations via convolutional networks (convnets) trained using stochastic gradient 
descent, as discussed, for example, by [7]. As discussed by [13], complex-valued convnets are essentially 
equivalent to tools familiar in harmonic analysis — data-driven multiscale windowed spectra, data-driven 
multiwavelet absolute values, or (in their most general configuration) data-driven nonlinear multiwavelet 
packets. “Data-driven” refers to fitting (also known as learning or training) the combination of the convnet 
and the classification stage by minimizing the cost/loss/objective function associated with the classification. 
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Classical classification stages neglect that many convnets are “equivariant” to scalar multiplication — mul-
tiplying the input values by any real number multiplies the output by the same factor; the present paper 
leverages this equivariance via a “scale-invariant” classification stage — a stage for which multiplying the 
input values by any nonzero real number leaves the output unchanged. The scale-invariant classification 
stage turns out to be more robust to outliers (including obviously mislabeled data), fits/learns/trains pre-
cisely at the rate that the user specifies, and apparently results in slightly lower errors on several standard 
test sets when used in conjunction with some typical convnets for generating the feature activations. The 
computational costs are comparable to those of multinomial logistic regression. Similar classification has 
been introduced earlier in other contexts by [3,6,10,12,14,15] and others. Complementary normalization in-
cludes the work of [1,4] and the associated references. The key to effective learning is rescaling, as described 
in Section 3 below (see especially the last paragraph there).

The remainder of the present paper has the following structure: Section 2 sets the notation. Section 3
introduces the scale-invariant classification stage. Section 4 analyzes its robustness. Section 5 illustrates the 
performance of the classification on several standard data sets. Section 6 draws several conclusions. The two 
appendices, Appendix A and Appendix B, provide more detailed derivations.

2. Notational conventions

All numbers used in the classification stage will be real valued (though the numbers used for generating 
the inputs to the stage may in general be complex valued). We follow the recommendations of [8]: all vectors 
are column vectors (aside from gradients of a scalar with respect to a column vector, which are row vectors), 
and we use ‖v‖ to denote the Euclidean norm of a vector v; that is, ‖v‖ is the square root of the sum of 
the squares of the entries of v. We use ‖A‖ to denote the spectral norm of a matrix A; that is, ‖A‖ is the 
greatest singular value of A, which is also the maximum of ‖Av‖ over every vector v such that ‖v‖ = 1. 
The terminology “Frobenius norm” of A refers to the square root of the sum of the squares of the entries 
of A. The spectral norm of a vector viewed as a matrix having only one column or one row is the same as 
the Euclidean norm of the vector; the Euclidean norm of a matrix viewed as a vector is the same as the 
Frobenius norm of the matrix.

3. A scale-invariant classification stage

We study a linear classification stage that assigns one of k classes to each real-valued vector x of feature 
activations (together with a measure of confidence in its classification), with the assignment being inde-
pendent of the Euclidean norm of x; the Euclidean norm of x is its “scale.” We associate to the k classes 
target vectors t1, t2, . . . , tk that are the vertices of either a standard simplex or a regular simplex embedded 
in a Euclidean space of dimension m ≥ k — the dimension of the embedding space being strictly greater 
than the minimum (k − 1) required to contain the simplex will give extra space to help facilitate learning; 
[3,6,10,12,14,15] (amongst others) discuss these simplices and their applications to classification. For the 
standard simplex, the targets are just the standard basis vectors, each of which consists of zeros for all but 
one entry. For both the regular and standard simplices,

‖t1‖ = ‖t2‖ = · · · = ‖tk‖ = 1. (1)

Given an input vector x of feature activations, we identify the target vector tj that is nearest in the Euclidean 
distance to

z = y

‖y‖ , (2)
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