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Evaluation of the eigenvectors of symmetric tridiagonal matrices is one of the most 
basic tasks in numerical linear algebra. It is a widely known fact that, in the case 
of well separated eigenvalues, the eigenvectors can be evaluated with high relative 
accuracy. Nevertheless, in general, each coordinate of the eigenvector is evaluated 
with only high absolute accuracy. In particular, those coordinates whose magnitude 
is below the machine precision are not expected to be evaluated with any accuracy 
whatsoever.
It turns out that, under certain conditions, frequently encountered in applications, 
small (e.g. 10−50) coordinates of eigenvectors of symmetric tridiagonal matrices 
can be evaluated with high relative accuracy. In this paper, we investigate such 
conditions, carry out the analysis, and describe the resulting numerical schemes. 
While our schemes can be viewed as a modification of already existing (and well 
known) numerical algorithms, the related error analysis appears to be new. Our 
results are illustrated via several numerical examples.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The evaluation of eigenvectors of symmetric tridiagonal matrices is one of the most basic tasks in numer-
ical linear algebra (see, for example, such classical texts as [2,5,8–10,13,14,24,26,27]). Several algorithms to 
perform this task have been developed; these include Power and Inverse Power methods, Jacobi Rotations, 
QR and QL algorithms, to mention just a few. Many of these algorithms have become standard and widely 
known tools.

In the case when the eigenvalues of the matrix in question are well separated, most of these algorithms will 
evaluate the corresponding eigenvectors to a high relative accuracy (see also Section 2 below). More specif-
ically, suppose that n > 0 is an integer, that A is an n by n symmetric matrix, that λ is an eigenvalue of A, 

E-mail address: andrei.osipov@yale.edu.

http://dx.doi.org/10.1016/j.acha.2015.12.002
1063-5203/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.acha.2015.12.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
mailto:andrei.osipov@yale.edu
http://dx.doi.org/10.1016/j.acha.2015.12.002


JID:YACHA AID:1104 /FLA [m3L; v1.169; Prn:18/12/2015; 13:28] P.2 (1-39)
2 A. Osipov / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••

that v ∈ R
n is the corresponding unit-length eigenvector, and that v̂ ∈ R

n is its numerical approximation 
(produced by one of the standard algorithms). Then,

‖v − v̂‖ ≤ M · ε, (1)

where ‖ · ‖ denotes the Euclidean norm, ε is the machine precision (e.g. ε ≈ 10−16 for double precision 
calculations), and M is proportional to the inverse of the distance between λ and the rest of the spectrum 
of A.

However, a closer look at (1) reveals that it only guarantees that the coordinates of v be evaluated to 
high absolute accuracy. This is due to the following trivial observation. Suppose that we add ε to the first 
coordinate v̂1 of v̂. Then, the perturbed v̂ will not violate (1). On the other hand, the relative accuracy of 
v̂1 can be as large as

|v1 + ε− v1|
|v1|

= ε

|v1|
. (2)

In particular, if |v1| < ε, then v̂1 is not guaranteed to approximate v1 with any relative accuracy whatsoever.
Sometimes the poor relative accuracy of “small” coordinates is of no concern; for example, this is usually 

the case when v is only used to project other vectors onto it. Nevertheless, in several prominent problems, 
small coordinates of the eigenvector often need to be evaluated to high relative accuracy. Numerical eval-
uation of special functions provides a rich source of such problems; these include the evaluation of Bessel 
functions (see Sections 3.1, 3.2.2, 6.1), the evaluation of some quantities associated with prolate spheroidal 
wave functions (see Section 6.2, and also [23]), and the evaluation of singular values of the truncated Laplace 
transform (see [16]), among others.

In this paper, we describe a scheme for the evaluation of the coordinates of eigenvectors of certain 
symmetric tridiagonal matrices, to high relative accuracy. More specifically, we consider the matrices whose 
non-zero off-diagonal elements are constant (or approximately so), and whose diagonal elements constitute 
a monotonically increasing sequence (see, however, Remark 2 below). The connection of such matrices to 
Bessel functions and prolate spheroidal wave functions is discussed in Sections 3.2.2, 6.2, respectively. Also, 
we carry out detailed error analysis of our algorithm (see Sections 4.2, 4.3). While our scheme can be viewed 
as a modification of already existing (and well known) algorithms, such error analysis, perhaps surprisingly, 
appears to be new. In addition, we conduct several numerical experiments to illustrate the analysis, to 
demonstrate our scheme’s accuracy, and to compare the latter to that of some classical algorithms (see 
Section 7).

The following is one of the principal analytical results of this paper (see Theorem 19 in Section 4.3 for a 
more precise statement, and Theorems 13, 14, 15, Corollary 6 in Section 4.2 below for the treatment of a 
more general case).

Theorem 1. Suppose that a ≥ 1 is a real number, and that, for any real c ≥ 1, n = n(c) > c is an integer, 
the real numbers A1(c), . . . , An(c) are defined via the formula

Aj(c) = 2 + 2 ·
(
j

c

)a

, (3)

for every j = 1, . . . , n, and that the n by n symmetric tridiagonal matrix A = A(c) is defined via the formula

A(c) =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 1
1 A2 1

1 A3 1
. . . . . . . . .

1 An−1 1
1 An

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4)
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