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In this paper we construct explicit sampling sets and present reconstruction 
algorithms for Fourier signals on finite vector spaces G, with |G| = pr for a suitable 
prime p. The two sampling sets have sizes of order O(pt2r2) and O(pt2r3 log(p))
respectively, where t is the number of large coefficients in the Fourier transform. 
The algorithms approximate the function up to a small constant of the best possible 
approximation with t non-zero Fourier coefficients. The fastest of the algorithms has 
complexity O(p2t2r3 log(p)).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The problem of compressive sensing originated in the context of Fourier series [3]. The aim is to reconstruct 
a linear combination of a small number of complex exponentials from as few samples as possible, when only 
the number of the exponentials entering the linear combination is known. The additional challenge was to 
come up with practical and efficient methods for the reconstruction (which by its combinatorial nature is 
NP-hard, unless extra information is available).

Later on, the compressed sensing problem evolved to include a more general setup. The overall problems 
and main challenges, however, remained the same; and they concerned mostly the construction of sampling 
schemes that would allow (and guarantee) efficient reconstruction from as few measurements as possible, and 
the design of efficient reconstruction algorithms. For the latter, �1-minimization turned out to be a popular 
choice, and the chief technical condition to guarantee success for the reconstruction method was the restricted 
isometry condition (see [4] for the first introduction of these ideas, and [6] for an in-depth study). However, 
there still remained the problem of constructing measurement matrices (or, in the Fourier case, sampling 
sets) for which the RIP was actually provably fulfilled. An important (somewhat partial) answer to this 
problem was provided by random methods; e.g., in the case of random sampling of Fourier matrices the 
RIP assumption turns out to be true under rather weak assumptions on the number of samples [13], at least 
with high probability.
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However, the case of deterministic sampling sets with provably guaranteed reconstruction poses altogether 
different challenges. Firstly, the verification of properties like RIP is a very complex problem by itself [14], 
hence special care must be taken to allow such estimates. A first successful example for a deterministic 
construction with the RIP property was presented by DeVore [5]. For the Fourier setting, in [1,8] sampling 
sets and inversion algorithms were constructed for cyclic groups; an alternative construction of deterministic 
sampling sets guaranteeing RIP for the cyclic case was developed in [7]. All these constructions have a 
common restriction, commonly known as quadratic bottleneck: In order to reconstruct linear combinations of 
t basis vectors, they need O(t2) samples. A more recent paper by Bourgain and collaborators [2] managed to 
improve this to O(t2−ε), for a very small ε > 0, using rather involved arguments from additive combinatorics.

This paper considers efficiently sampling Fourier-sparse vectors on finite abelian groups. It can be seen 
as complementary to [1,7,8], with the main difference being that this paper focuses on finite vector spaces
rather than cyclic groups. We develop a general, simple scheme for the design of sampling sets, together 
with algorithms that allow reconstruction.

Hence the new methods provide an alternative means of explicitly designing universal sampling sets in a 
specific family of finite abelian groups G, i.e., sampling sets Ω ⊂ G that allow the reconstruction of any given 
linear combination of t characters of G from its restriction on Ω, together with explicit inversion algorithms, 
both for the noisy and noise free cases. The groups G we consider are finite vector spaces, and the sampling 
sets will be written as unions of suitable affine subspaces. The sampling sets actually fulfill the RIP property, 
which allows one to use the standard methods such as �1-minimization. However, the special structure of 
the sampling set makes the inversion algorithm particularly amenable to the use of a more structured (and 
potentially faster) reconstruction algorithm, using FFT methods. It should be stressed, though, that our 
construction is not able to beat the quadratic bottleneck.

2. Notation

Let p be a prime and r a positive integer. When considering their additive groups structure we have that 
(Z/pZ)r ∼= Fr

p. The vector space structure of Fr
p will enable us to construct the sampling sets needed in the 

algorithms described in this paper. We will write Fr
p also when considering only its additive group structure. 

Also in order to avoid complicated notations we will identify, where needed, elements of Z with their images 
in Fp, so that for example 1 could be viewed as either an element of Z or of Fp.

We will write H ≤ G for a subgroup H of G. Subsets of Fr
p are subgroups if and only if they are vector 

spaces (since Fp is a field of prime order). So when looking at Fr
p as a vector space we will write H ≤ Fr

p for 
a subspace H. For any subgroup H ≤ G we will also write Rep(G/H) for a set of representatives of cosets 
of H in G.

In Section 4 we will also be working with both Fp and Fq, where q is a power of p. Since vector spaces 
over Fq can be viewed also as vector spaces over Fp, we will write dimFp

(V ) and dimFq
(V ) for the dimension 

of V as a vector space over Fp or Fq respectively. Similarly we will write span
Fp

(A) and span
Fq

(A) for the 
span of A as vector space over Fp or Fq respectively.

Let F̂r
p consist of all group homomorphisms Fr

p → C. We have that

F̂r
p = {χ(y1,...,yr) : yi ∈ Fp} = {χy : y ∈ Fr

p},

where, if ωp = e2πi/p, we define χ(y1,...,yr)(x1, . . . , xr) := ωx1y1+...+xryr
p for (x1, . . . , xr) ∈ Fr

p. This is well 
defined since ωp

p = 1. Also it is easy to check that χyχz = χy+z for y, z ∈ Fr
p.

For any function f : (Z/pZ)r → C let f̂ : F̂r
p → C be its Fourier transform, so that

f =
∑

χy∈F̂r
p

f̂(χy)χy.
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