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We consider fast kernel summations in high dimensions: given a large set of points 
in d dimensions (with d � 3) and a pair-potential function (the kernel function), 
we compute a weighted sum of all pairwise kernel interactions for each point in the 
set. Direct summation is equivalent to a (dense) matrix–vector multiplication and 
scales quadratically with the number of points. Fast kernel summation algorithms 
reduce this cost to log-linear or linear complexity.
Treecodes and Fast Multipole Methods (FMMs) deliver tremendous speedups by 
constructing approximate representations of interactions of points that are far 
from each other. In algebraic terms, these representations correspond to low-rank 
approximations of blocks of the overall interaction matrix. Existing approaches 
require an excessive number of kernel evaluations with increasing d and number 
of points in the dataset.
To address this issue, we use a randomized algebraic approach in which we 
first sample the rows of a block and then construct its approximate, low-
rank interpolative decomposition. We examine the feasibility of this approach 
theoretically and experimentally. We provide a new theoretical result showing a 
tighter bound on the reconstruction error from uniformly sampling rows than the 
existing state-of-the-art. We demonstrate that our sampling approach is competitive 
with existing (but prohibitively expensive) methods from the literature. We also 
construct kernel matrices for the Laplacian, Gaussian, and polynomial kernels—all 
commonly used in physics and data analysis. We explore the numerical properties 
of blocks of these matrices, and show that they are amenable to our approach. 
Depending on the data set, our randomized algorithm can successfully compute 
low rank approximations in high dimensions. We report results for data sets with 
ambient dimensions from four to 1,000.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Given n source points xj with densities qj , m target points yi, and a kernel function K, we seek to 
evaluate the kernel sum
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ui =
n∑

j=1
K(yi, xj)qj =

n∑
j=1

Kijqj (1.1)

for each target yi, with Kij = K(yi, xj). Computing u ∈ R
m is equivalent to a matrix–vector multiplication, 

u = Kq, K ∈ R
m×n, and it requires O(nm) work. It is prohibitively expensive for large m and n. Fast 

kernel summation algorithms (also known as generalized N-body problems) aim to provide an approximate 
solution with guaranteed error using only O(n + m) kernel evaluations. They do so by identifying and 
approximating blocks of K that have low-rank structure.

Fast kernel summations are a fundamental operation in computational physics. They are related to the 
solution of partial differential equations in which K is the corresponding Green’s function. Examples include 
the 3D Laplace potential (reciprocal distance kernel) and the heat potential (Gaussian kernel).

Kernel summations are also fundamental to non-parametric statistics and machine learning tasks such as 
density estimation, regression, and classification. Linear inference methods such as support vector machines 
[68] and dimension reduction methods such as principal components analysis [62] can be efficiently gener-
alized to non-linear methods by replacing inner products with kernel evaluations [9]. Problems in statistics 
and machine learning are often characterized by very high-dimensional inputs.

Existing fast algorithms for the kernel summation problem hinge on the construction of efficient ap-
proximations of interactions1 between groups of sources and targets when these groups are far apart or 
well separated (see Section 2). In the physics/PDE community, they are known as far-field approximations. 
From a linear algebraic point-of-view, they correspond to low-rank decompositions of blocks of the matrix K. 
These approximations can be roughly grouped in three categories: analytic, semi-analytic, and algebraic.

In analytic methods, Taylor or kernel-dependent special function expansions are used to approximate 
the far-field. The Fast Multipole Method (FMM) [38] is one of these. Semi-analytic methods rely only on 
kernel evaluations, but the low-rank constructions use the analytical properties of the underlying kernels. 
For example, the kernel-independent fast multipole method [81] requires that the underlying kernel is the 
Green’s function of a PDE. Finally, algebraic methods (e.g. [59]) also only use kernel evaluations, and the 
only necessary condition is the existence a low-rank block structure for K.

In high dimensions, most existing methods fail. There are two main reasons for the lack of scalability 
of analytic and semi-analytic methods. First, all existing schemes require too many terms for the kernel 
approximation. Analytic and semi-analytic schemes can deliver approximations to arbitrary accuracy (in 
practice all the way to machine precision) with O(n + m) kernel evaluations, but the constant can be very 
large. For p terms in the series expansion, they require p = cd or p = cd−1 terms to deliver error that decays 
exponentially in c > 1. Variants that can scale reasonably well beyond three dimensions scale as p = dc

and deliver error that decays algebraically in c. For sufficiently large d and c > 1, either of these methods 
becomes too expensive [40].

The second reason for lack of scalability of existing schemes is that they do not take advantage of any 
lower-dimensional structures that may be present in the data. For example, the data may be embedded in a 
low-dimensional manifold. This is mostly relevant in data analysis applications in which often the important 
dimension is not the ambient one but instead an intrinsic dimension that depends on the distribution of 
the source and target points.

Algebraic approximations [59] are a promising direction for scalable methods in high dimensions. These 
approximations are based on the observation that Equation (1.1) is a matrix–vector product and certain 
blocks of the matrix have low-rank structure. Algebraic methods are useful only if the approximation can be 
computed efficiently. Efficient methods for low dimensions do exist, but in high-dimensions they fail because 
the number of kernel evaluations required exceeds the cost of the direct summation.

1 We use the term interaction between two points to refer to the value of the kernel K.
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