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Many of the applications of compressed sensing have been based on variable 
density sampling, where certain sections of the sampling coefficients are sampled 
more densely. Furthermore, it has been observed that these sampling schemes 
are dependent not only on sparsity but also on the sparsity structure of the 
underlying signal. This paper extends the result of Adcock, Hansen, Poon and 
Roman (arXiv:1302.0561, 2013) [2] to the case where the sparsifying system forms 
a tight frame. By dividing the sampling coefficients into levels, our main result will 
describe how the amount of subsampling in each level is determined by the local 
coherences between the sampling and sparsifying operators and the localized level 
sparsities – the sparsity in each level under the sparsifying operator.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Over the past decades, much of the research in signal processing has been based on the assumption that 
natural signals can be sparsely represented. One of the achievements resulting from this realization was 
compressed sensing, which made it possible to recover a sparse signal from very few non-adaptive linear 
measurements. Compressed sensing is typically modeled as follows. Given an unknown vector x ∈ C

N and 
a measurement device represented by a matrix V , one aims to recover x from a highly incomplete set of 
measurements by solving

R(x,Ω) ∈ argmin
z∈CN

‖Dz‖�1 subject to PΩV z = PΩV x, (1.1)

where Ω indexes the given measurements, PΩ is a projection matrix which restricts a vector to its coefficients 
indexed by Ω and D is a sparsifying matrix under which Dx is assumed to be sparse. Typical results in 
compressed sensing describe how under certain conditions, one can guarantee recovery when the number of 
measurements |Ω| scales up to a log factor linearly with sparsity [9,8,7].
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A large part of the theoretical development of compressed sensing has revolved around the construction of 
random sampling matrices (such as matrices constructed from random Gaussian ensembles) where the choice 
of the samples is completely independent of the sparsifying system [16,36,38,43]. The use of overcomplete 
dictionaries in compressed sensing has also been studied in works such as [6,20,28], but again, recovery 
guarantees were obtained only for randomized sampling matrices or subsampled structured matrices with 
randomized column signs. However, in the majority of applications where compressed sensing has been 
of interest, one is concerned with the recovery of a signal from structured measurements, without the 
possibility of first randomizing the underlying signal. For example, the measurements in magnetic resonance 
imaging (MRI) are modeled via the Fourier transform, while the measurements in radio interferometry are 
modeled via the Radon transform. In these cases, how one can achieve subsampling is highly dependent on 
the sparsifying transform. To explain this statement, we recall some results of compressed sensing on the 
recovery of a vector of length N from its discrete Fourier coefficients under various sparsifying transforms.

(1) If the underlying vector is s-sparse in its canonical basis, then one can guarantee perfect recovery from 
O (s logN) Fourier coefficients drawn uniformly at random [8].

(2) If the underlying vector is s-sparse with respect to its total variation [8], then O (s logN) Fourier 
coefficients drawn uniformly at random will again guarantee perfect recovery, however, in the presence 
of noise and approximate sparsity, then one can obtain superior error bounds with sampling strategies 
which sample more densely at low frequency coefficients instead [34].

(3) If the underlying vector is s-sparse with respect to some wavelet basis, then it is impossible to guarantee 
recovery from O (s logN) samples from sampling uniformly at random. This is a phenomenon which has 
been observed since the early days of compressed sensing and there has been extensive investigations 
into how subsampling is still achievable by sampling more densely at low frequencies [33,31,39,42,35]. 
These approaches were often referred to as variable density sampling and theoretical guarantees for 
these approaches were recently derived in [29] and [2].

More generally, whether one can sample uniformly at random depends on whether the sampling and spar-
sifying matrices are sufficiently incoherent. In the absence of incoherence (as is the case in (3) above), how 
one should choose Ω in (1.1) becomes a far more delicate issue. To explain the use of compressed sensing 
in this case, a theoretical framework was developed in [2] on the basis of three new principles: multilevel 
sampling, asymptotic incoherence and asymptotic sparsity. By modelling a nonuniform sampling strategies 
via multilevel sampling, the need for dense sampling at low frequencies in (3) is due to the following two 
reasons.

(i) The high correspondence between Fourier and wavelet bases at low Fourier frequencies and low wavelet 
scales, but the low correspondence at high Fourier frequencies and high wavelet scales (asymptotic 
incoherence).

(ii) Typical signals or images exhibit distinctive sparsity patterns in their wavelet coefficients, and become 
increasingly sparse at higher wavelet scales (asymptotic sparsity).

In contrast to the large body of results in compressed sensing where the strategy is based on sparsity alone, 
the results of [2] demonstrated that one of the driving forces behind the success of variable density sampling 
strategies is their correspondence to the sparsity structure of the underlying signals of interest. These new 
principles provide a framework under which one can understand how to exploit both the sparsity structure 
of the underlying signal, and the correspondences between the sampling and sparsifying systems to devise 
optimal subsampling strategies [41,37].
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