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In this paper, we introduce a new (constructive) characterization of tight wavelet 
frames on non-flat domains in both continuum setting, i.e. on manifolds, and discrete 
setting, i.e. on graphs; we discuss how fast tight wavelet frame transforms can be 
computed and how they can be effectively used to process graph data. We start with 
defining the quasi-affine systems on a given manifold M. The quasi-affine system is 
formed by generalized dilations and shifts of a finite collection of wavelet functions 
Ψ := {ψj : 1 ≤ j ≤ r} ⊂ L2(R). We further require that ψj is generated by some 
refinable function φ with mask aj . We present the condition needed for the masks 
{aj : 0 ≤ j ≤ r}, as well as regularity conditions needed for φ and ψj , so that 
the associated quasi-affine system generated by Ψ is a tight frame for L2(M). The 
condition needed for the masks is a simple set of algebraic equations which are not 
only easy to verify for a given set of masks {aj}, but also make the construction 
of {aj} entirely painless. Then, we discuss how the transition from the continuum 
(manifolds) to the discrete setting (graphs) can be naturally done. In order for the 
proposed discrete tight wavelet frame transforms to be useful in applications, we 
show how the transforms can be computed efficiently and accurately by proposing 
the fast tight wavelet frame transforms for graph data (WFTG). Finally, we consider 
two specific applications of the proposed WFTG: graph data denoising and semi-
supervised clustering. Utilizing the sparse representation provided by the WFTG, 
we propose �1-norm based optimization models on graphs for denoising and semi-
supervised clustering. On one hand, our numerical results show significant advantage 
of the WFTG over the spectral graph wavelet transform (SGWT) by [1] for both 
applications. On the other hand, numerical experiments on two real data sets show 
that the proposed semi-supervised clustering model using the WFTG is overall 
competitive with the state-of-the-art methods developed in the literature of high-
dimensional data classification, and is superior to some of these methods.
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1. Introduction

In recent years, we are experiencing rapid advances in information and computer technology, which 
contribute greatly to the exponential growth of data. To properly handle, process and analyze such huge 
and often unstructured data sets, sophisticated mathematical tools and efficient computing methods need 
to be developed. Such huge data sets, commonly referred to as “big data”, are generally modeled as huge 
graphs living in very high dimensional spaces. Graphs are commonly understood as a certain discretization 
or a random sample from some smooth Riemannian manifold [2–6]. To understand and analyze graphs and 
data on graphs (will be called graph data), the graph Laplacian is widely used to reveal the geometric 
properties of the graph and plays an important role in many applications such as graph clustering.

In signal and image processing, many methods are transform based. Sparsity of the signal/image to 
be recovered under a certain transform is the key to the success of many existing algorithms. One of the 
successful examples is the wavelet frame transform, especially the tight wavelet frame transform [7–19]. The 
power of tight wavelet frames lies in their ability to sparsely approximate piecewise smooth functions and 
the existence of fast decomposition and reconstruction algorithms. Recently, geometric properties of tight 
wavelet frames were discovered by connecting them to differential operators under variational and PDE 
frameworks [17–19].

The success of wavelet frames for data defined on flat domains motivates much research on generalizing 
wavelets and wavelet frames to curved, irregular and unstructured domains. In this paper, we introduce a 
(constructive) characterization of tight wavelet frames on non-flat domains in both continuum (on manifolds) 
and discrete (on graphs) setting, discuss how fast tight wavelet frame transforms can be computed and how 
they can be effectively used to process and analyze graph data. The basic idea is to understand eigenfunctions 
of Laplace–Beltrami operator (graph Laplacian in discrete setting) as Fourier basis on manifolds (graphs in 
discrete setting) and the associated eigenvalues as frequency components. This idea was used earlier by [1] in 
the discrete setting. In this paper, we further observe that Quasi-affine systems generated by dilations and 
shifts of wavelet functions can be defined on manifolds. When the elements in the quasi-affine system are 
generated from a refinable function, the transition from continuum (manifolds) to discrete (graphs) setting 
can be done very naturally. More importantly, such consideration makes the construction of various types of 
tight wavelet frames on manifolds/graphs totally painless, and it ensures the existence of fast decomposition 
and reconstruction algorithms which is crucial to many applications.

Given a compact and connected Riemannian manifold (M, g), denote L2(M) the space of square 
integrable functions on M. We start with defining the quasi-affine system on M. The quasi-affine sys-
tem is formed by generalized dilations and shifts of a finite collection of wavelet functions Ψ := {ψj :
1 ≤ j ≤ r} ⊂ L2(R). We further restrict our consideration of Ψ to those that are generated by a set of 
masks {aj : 0 ≤ j ≤ r} ⊂ �2(Z). Then, we present the condition needed for the masks {aj : 0 ≤ j ≤ r}
(i.e. equation (2.15)) so that the associated quasi-affine system generated by Ψ is a tight frame for L2(M)
(Theorem 2.1). The condition on the masks is a simple set of algebraic equations which are not only easy 
to verify for a given set of masks {aj}, but also make the construction of {aj} painless. In particular, we 
show that under suitable conditions, the quasi-affine system on M generated by any set of the framelets 
constructed from the unitary extension principle [20] on R is a tight frame for L2(M) (Corollary 2.1). In 
addition, many masks constructed in [18] satisfy the conditions (2.15) in Theorem 2.1 as well, although they 
may not satisfy the unitary extension principle. Therefore, Theorem 2.1 is not only a rather generic char-
acterization of tight wavelet frames for L2(M), it also provides a simple way of verifying and constructing 
various types of tight wavelet frame systems on L2(M).

Thanks to the aforementioned special consideration on Ψ, i.e. associating Ψ with a set of masks {aj}, we 
discuss how the transition from the continuum (manifolds) to the discrete setting (graphs) can be naturally 
done. We show that inner products with wavelet frame functions on manifolds can be approximated in the 
discrete setting by “filtering” with the associated masks on graphs. This leads to multi-level discrete tight 
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