Quantum potential in covariant quantum mechanics

Josef Janyška ${ }^{\text {a,*,1 }}$, Marco Modugno ${ }^{\text {b }}$
a Department of Mathematics and Statistics, Masaryk University, Kotlářská 2, 61137 Brno,
Czech Republic
b Department of Mathematics and Informatics "U. Dini", University of Florence, Via S. Marta 3, 50139
Florence, Italy

A R T I C L E I N F O

Article history:

Received 12 October 2016
Received in revised form 15 March
2017
Available online xxxx
Communicated by O. Rossi
Devoted to Ivan Kolář on occasion of his 80th birthday

MSC:

81Q99
81S10
83C00
70 H 40
70G45
58A20

Keywords:

Covariant classical mechanics
Covariant quantum mechanics
Galileian metric
Phase space
Quantum connection
Quantum potential

Abstract

We discuss several features of the classical quantum potential appearing in Covariant Quantum Mechanics. In particular, we compare the "observed potential" $A[K, G, o]$ of the joined spacetime connection K with the potential A^{\uparrow} of the cosymplectic phase 2-form $\Omega[K, G]$ and with the potential A^{\uparrow} of the upper quantum connection U^{\uparrow}. Moreover, we discuss the distinguished observer $o[\Psi]$ and the distinguished timelike potential $A[\Psi]$ associated with a non-vanishing quantum section Ψ. We show that the above objects play a natural role in the context of the kinetic quantum momentum $Q[\Psi]$, of the quantum probability current $J[\Psi]$, of the Schrödinger operator $S[\Psi]$ and of the classical fluid associated with a non-vanishing quantum section Ψ.

© 2017 Published by Elsevier B.V.

0. Introduction

Starting from E. Cartan [8], there have been proposed several formulations of Quantum Mechanics in a curved spacetime with absolute time (see, for instance, [2-4,12,17-23,28,37-41,52,54,59] and citations therein).

[^0]http://dx.doi.org/10.1016/j.difgeo.2017.03.021
0926-2245/© 2017 Published by Elsevier B.V.

Covariant Quantum Mechanics is an approach to Quantum Mechanics in a curved spacetime fibred over time and equipped with absolute time and a riemannian metric on its fibres, aimed at implementing several features of General Relativity in this riemannian framework. This formulation started some years ago [26] and has been further developed by several papers (see, for instance, [6,7,25,31,44-47,49,50,56,57] and citations therein).

Several ideas and methods are typical features of Covariant Quantum Mechanics. For instance, we consider as phase space the 1st jet space $J_{1} \boldsymbol{E}$, we couple the gravitational field K^{\natural} and the electromagnetic field F into a joined spacetime connection, which yields several joined objects of the phase space, such as the cosymplectic 2 -form Ω, which plays a fundamental role in classical and quantum mechanics. Moreover, we introduce the special phase functions and their Lie bracket. In the quantum theory, we introduce a complex line bundle \boldsymbol{Q} over spacetime and an upper quantum connection U^{\uparrow}, which is hermitian and "reducible" and whose curvature is proportional to Ω. All main further quantum objects are derived in a natural way from this connection, by means of a "criterion of projectability", which allows us to get rid of observers, in view of the covariance of the theory. The quantum operators are achieved via the classification of hermitian quantum vector fields and their Lie algebra isomorphism with the special phase functions.

Scales. We deal with units of measurement on the same footing of gauges, observers and coordinates. So, in order to make our theory explicitly independent of "units of measurement", we use the notion of "spaces of scales" [32].

We define a positive space to be a semi-vector space \mathbb{U} on the semi-field \mathbb{R}^{+}, such that the scalar product $\cdot: \mathbb{R}^{+} \times \mathbb{U} \rightarrow \mathbb{U}$ is a left free and transitive action of the group $\left(\mathbb{R}^{+}, \cdot\right)$ on \mathbb{U}. We can define in a natural way the tensor product $\mathbb{U} \otimes \mathbb{U}^{\prime}$ of two positive spaces, the rational powers $\mathbb{U}^{m / n}$ of a positive space and the dual \mathbb{U}^{*} of a positive space. We make a natural identification $\mathbb{U}^{*} \simeq \mathbb{U}^{-1}$. Moreover, we can define in a natural way the tensor product $\mathbb{U} \otimes \boldsymbol{V}$ of a positive space with a vector space; indeed, it turns out to be a vector space.

We consider the following basic positive spaces: 1) the space \mathbb{T} of time intervals, 2) the space \mathbb{L} of lengths, 3) the space \mathbb{M} of masses. Then, we define a space of scales to be any tensor product of rational powers of the above positive spaces.

We consider the Planck constant $\hbar \in \mathbb{T}^{-1} \otimes \mathbb{L}^{2} \otimes \mathbb{M}$ as a "universal scale". Moreover, we will consider a mass $m \in \mathbb{M}$ and charge $q \in \mathbb{T}^{-1} \otimes \mathbb{L}^{3 / 2} \otimes \mathbb{M}^{1 / 2}$. We denote a time unit of measurement and its dual, respectively, by $u_{0} \in \mathbb{T}$ and $u^{0} \in \mathbb{T}^{*} \simeq \mathbb{T}^{-1}$.

1. Setting of the classical theory

We start by summarising some achievements of Covariant Classical Mechanics.

1.1. Spacetime

We consider time to be an oriented 1-dimensional affine space \boldsymbol{T}, associated with the vector space $\mathbb{T} \otimes \mathbb{R}$, and spacetime to be an oriented 4-dimensional manifold \boldsymbol{E} equipped with a time fibring

$$
t: \boldsymbol{E} \rightarrow \boldsymbol{T}
$$

The time fibring yields the distinguished time form $d t: \boldsymbol{E} \rightarrow \mathbb{T} \otimes T^{*} \boldsymbol{E}$.
A motion is defined to be a section $s: \boldsymbol{T} \rightarrow \boldsymbol{E}$.
We shall refer to spacetime charts $\left(x^{\lambda}\right) \equiv\left(x^{0}, x^{i}\right)$, defined as charts of the manifold \boldsymbol{E}, which are adapted to the time fibring, the affine structure of \boldsymbol{T} and the orientation of \boldsymbol{E} and \boldsymbol{T}. Every spacetime chart (x^{λ}) yields a time scale $u_{0} \in \mathbb{T}$. We shall denote the associated bases of vector fields and forms by $\left(\partial_{\lambda}\right) \equiv\left(\partial_{0}, \partial_{i}\right)$

https://daneshyari.com/en/article/5773633

Download Persian Version:

https://daneshyari.com/article/5773633

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: janyska@math.muni.cz (J. Janyška), marco.modugno@unifi.it (M. Modugno).
 ${ }^{1}$ Supported by the grant GA ČR 14-02476S.

