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In this paper we give a construction for discrete constant mean curvature surfaces 
in Riemannian spaceforms in terms of integrable systems techniques, which we call 
the discrete DPW method for discrete constant mean curvature surfaces. Using 
this construction, we give several examples, and analyze singularities of the parallel 
constant Gaussian curvature surfaces.
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1. Introduction

In the smooth (or continuous) case, surfaces governed by some integrable equation, like constant negative 
Gaussian curvature surfaces and non-zero constant mean curvature (for short, CMC) surfaces, have been well 
studied. When studying such surfaces, it is useful to describe 2 ×2 matrix representations and matrix-valued 
partial differential equations called Lax pairs. In particular, applying matrix-splitting theorems, Dorfmeister, 
Pedit, Wu [9] established the generalized Weierstrass representation for smooth CMC surfaces in Euclidean 
3-space R3 (regarding the cases of smooth CMC surfaces in spherical 3-space S3 and hyperbolic 3-space H3, 
see [2,10] for example). This representation is now called the DPW method for smooth CMC surfaces.
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Stepping away from smooth surface theory, there has been recent progress on discrete surface theory. 
In the last three decades, using integrable systems techniques, discrete surface theory has been developed. 
Burstall, Hertrich-Jeromin, Rossman, Santos [8] described discrete CMC surfaces in any 3-dimensional 
Riemannian spaceform and gave several new examples of discrete CMC surfaces, and Bobenko, Hertrich-
Jeromin, Lukyanenko [3] gave a curvature theory for discrete surfaces in Riemannian spaceforms (see also 
[7]). Due to these works, we are able to treat discrete surfaces in 3-dimensional Riemannian spaceforms. In 
particular, constructing discrete CMC surfaces is one of the central topics in the study of discrete surface 
theory. In fact, Bobenko and Pinkall [1] introduced a Weierstrass representation for discrete minimal sur-
faces in R3, and Hertrich-Jeromin [11] derived a Weierstrass-type representation for discrete CMC 1 surfaces 
in H3.

Bobenko, Pinkall [4] described Lax pairs for discrete CMC surfaces in R3 and gave a Cauchy problem 
for them (see also [12]). Applying matrix-splitting formulae (see also Propositions 4.1, 4.2 here), Hoffmann 
[13] gave a construction for discrete non-zero CMC surfaces in R3. This method is called the discrete DPW 
method for discrete CMC surfaces in R3. On the other hand, although discrete CMC surfaces became 
treatable recently, the discrete DPW method for discrete CMC surfaces in other 3-dimensional Riemannian 
spaceforms had not yet been considered.

In this paper, we give the discrete DPW method for discrete CMC surfaces in S3 and H3, which is a 
generalization of the work by Hoffmann [13], and give several examples. In the smooth case, we can choose 
a common Lax pair for R3, S3 and H3. Also in the discrete case, using the same Lax pair as in R3, we 
will show that we can construct discrete CMC surfaces in S3 and H3 and that discrete CMC surfaces given 
by Lax pairs have mean curvatures (in the sense of [3] and [7]) that are constant. Our construction covers 
discrete isothermic surfaces in S3 with any constant mean curvature H, and the discrete isothermic surfaces 
in H3 with constant mean curvature H satisfying |H| > 1.

As an application, we will also construct discrete constant positive Gaussian curvature surfaces by taking 
parallel surfaces of discrete CMC surfaces, and look at their singularities. In the smooth case, constant 
Gaussian curvature surfaces generally have singularities (for example, see [15]), so it is natural to expect that 
discrete constant positive Gaussian curvature surfaces have certain configurations of singularities. Based on 
work by Rossman and the second author [19], we will analyze singularities of such discrete constant positive 
Gaussian curvature surfaces in R3, S3 and H3.

2. The DPW method for smooth CMC surfaces

First we introduce construction of smooth CMC H �= 0 surfaces in R3, S3 and H3 introduced in [9]

(see also [10]), which is now called the DPW method. Throughout this paper, I :=
(

1 0
0 1

)
, σ1 :=(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
, S3 := {Y ∈ R

4|〈Y, Y 〉 = 1}, R3,1 denotes Minkowski 4-space 

with signature (+ + +−), and H3 := {Y ∈ R
3,1|〈Y, Y 〉 = −1}.

Let Σ be a simply connected domain in the complex plane C with the usual complex coordinate z = x +iy, 
let f : Σ → R

3 be a conformal immersion satisfying 〈fx, fx〉 = 〈fy, fy〉 = 4e2u, 〈fx, fy〉 = 0 for some scalar 
function u : Σ → R, and let N : Σ → S be its unit normal vector field. In this paper we identify R4 (resp. 
R

3,1) with the unitary group 
{
X ∈ M2×2

∣∣X · X̄t = I
}

(resp. another matrix group) as follows:

R
4 (or, R

3,1) � x = (x1, x2, x3, x4) �−→
(

x4 + ν · x3 x1 − ix2
−ε · (x1 + ix2) x4 − ν · x3

)
, (1)

with ν = i, ε = 1 for R4 (resp. ν = 1, ε = −1 for R3,1). The metric becomes, under this identification,

〈X,Y 〉 = ε · 1
2trace(Xσ2Y

tσ2).
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