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In this note we provide natural optimal geometric conditions for a Riemannian 
manifold suitably covered by two open metric balls to be homeomorphic to a sphere. 
This can be viewed as a geometric analogue of Brown’s theorem in topology stating 
that a closed manifold covered by two topological balls is a sphere.

© 2017 Elsevier B.V. All rights reserved.

As the simplest closed manifold, the sphere enjoys a unique and basic role topologically as well as met-
rically. Geometrically, the unit sphere is uniquely determined as an “optimal object” in a variety of ways 
often referred to as Sphere Theorems. Examples of such recognition results include the classical Rauch–
Berger–Klingenberg 1/4-pinching theorem (for diffeomorphism see Brendle–Schoen [5]), the diameter sphere 
theorem [15], Micallef–Moore’s positive isotropic curvature sphere theorem [19], and Perelman’s almost max-
imal volume sphere theorem [22] (for diffeomorphism see Colding and Cheeger [10,9]). Topologically, Brown’s 
Theorem [4] recognizes the sphere as the only closed manifold covered by two open Euclidean balls.

As a metric contrast to Brown’s Theorem, we point out, that any closed (smooth) manifold, M admits 
a Riemannian metric so that it is covered by two (proper) open metric balls, even tightly covered in the 
following sense:

For any ε > 0 and fixed r > 0, there is a Riemannian metric on M so that

M = B(p, r + ε) ∪B(q, r + ε), with ρ(p, q) = 2r

where B(p, r) denotes the open r-ball centered at p and ρ(p, q) is the distance between p and q. For example, 
it can be arranged that the complement of an arbitrarily small metric ball in M is a disc with constant 
curvature 1.

However, if for a fixed Riemannian metric M is ε-tightly covered for every ε > 0, then of course

M = D(p, r) ∪D(q, r), with ρ(p, q) = 2r,
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where D(p, r) denotes the closed r ball with center p. In this case all geodesics emanating from p of length 
2r are minimal and terminate at q (see Lemma 1.3). In particular, such an M is a topological sphere.

Our goal is to seek natural geometric conditions under which a Riemannian manifold tightly covered by 
two open metric balls, in the sense above, is a topological sphere. Our results hinge on the observation that 
for certain classes of metric spaces being tightly covered by two proper open metric balls is equivalent to 
having small excess in the sense of [13]. Here excessM < δ means there is a pair of points p, q ∈ M such 
that for any x ∈ M ,

ρ(p, x) + ρ(x, q) − ρ(p, q) < δ.

In this case, clearly M is ε = δ
2 tightly covered in the above sense.

Indeed, we have (see section 1)

Theorem A. Let M be a Gromov–Hausdorff precompact class of closed Riemannian manifolds for which any 
X ∈ M̄ is a non-branching geodesic metric space. Then for any ε > 0 there is a δ > 0 such that excessM < ε

if M is δ-tightly covered by two open balls, and vice versa.

Recall, that from the Bishop–Gromov relative volume comparison theorem it follows that the class of 
all closed n-manifolds M with Ricci curvature, ricM ≥ (n − 1)k and diameter diamM ≤ D is Gromov–
Hausdorff precompact. The subclasses where the sectional curvature secM ≥ k, or the injectivity radius 
injM ≥ i are examples of M as above. In the first case because any limit object is an Alexandrov space, 
and in the second case the non-branching property was proved by Taylor in [23].

Appealing to the main theorems of [21] and [13] this yields the following immediate corollaries

Theorem B. For any real k, r > 0, i > 0 and integer n ≥ 2 there is an ε0 = ε0(k, r, i, n) such the following 
holds: Any closed Riemannian n-manifold M with ricM ≥ (n − 1)k, injM ≥ i and

Mn = Bp(r + ε) ∪Bq(r + ε), ρ(p, q) = 2r

is homeomorphic to Sn if ε < ε0.

If the condition injM ≥ i is relaxed to volM ≥ v, the conclusion fails as, e.g., the examples due to 
Anderson [1] shows. However, if at the same time ricM ≥ (n − 1)k is strengthened to secM ≥ k we have:

Theorem C. For any real k, r > 0, v > 0 and integer n ≥ 2 there is an ε1 = ε1(k, r, v, n) such the following 
holds: Any closed Riemannian n-manifold M with secM ≥ k, volM ≥ v and

Mn = Bp(r + ε) ∪Bq(r + ε), ρ(p, q) = 2r

is homeomorphic to Sn if ε < ε1.

In these statements we have no explicit estimate for εi. Likewise, we do not prove that the open metric 
balls B(p, r + ε) and B(q, r + ε) in M are homeomorphic to the Euclidean n-ball. Although, Theorem A
implies that Theorems B and C are equivalent to the main results in [21] and [13] we present alternate short 
proofs.

In contrast, if 2r = d = diamM and volM ≥ v is strengthened to injM ≥ i, we have a constructive 
proof that being ε-tightly covered implies small excess. Thus by critical point theory lemma 3 of [13] we 
have
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