Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Sectional curvatures of ruled real hypersurfaces in a complex hyperbolic space

Sadahiro Maeda^a, Hiromasa Tanabe^{b,*}

^a Department of Mathematics, Saga University, 1 Honzyo, Saga, 840-8502, Japan
 ^b Department of Science, National Institute of Technology, Matsue College, Matsue, Shimane 690-8518, Japan

ARTICLE INFO

Article history: Received 28 September 2016 Available online xxxx Communicated by J. Berndt

Dedicated to Professor Yasunao Hattori on the occasion of his 60th birthday

MSC: primary 53B25 secondary 53C40

Keywords: Ruled real hypersurfaces Sectional curvatures Complex hyperbolic space

1. Introduction

A complex *n*-dimensional complete and simply connected Kähler manifold of constant holomorphic sectional curvature $c \neq 0$ is called a nonflat complex space form, which is denoted by $\widetilde{M}_n(c)$. Such a space is holomorphically isometric to either an *n*-dimensional complex projective space $\mathbb{C}P^n(c)$ or an *n*-dimensional complex hyperbolic space $\mathbb{C}H^n(c)$ according as c > 0 or c < 0.

The study of real hypersurfaces isometrically immersed into $M_n(c)$ is one of the most interesting fields in Riemannian submanifold theory. Among typical examples of real hypersurfaces in $\widetilde{M}_n(c)$, we have the class of ruled real hypersurfaces. A real hypersurface M^{2n-1} in $\widetilde{M}_n(c)$ $(n \ge 2)$ is said to be *ruled* if the holomorphic distribution $T^0M := \{X \in TM \mid \eta(X) = 0\}$ is integrable and each of its leaves is locally congruent to a totally geodesic complex hypersurface $\widetilde{M}_{n-1}(c)$ of the ambient space $\widetilde{M}_n(c)$, where η is the

* Corresponding author. E-mail addresses: smaeda@ms.saga-u.ac.jp (S. Maeda), h-tanabe@matsue-ct.jp (H. Tanabe).

 $\frac{\text{http://dx.doi.org/10.1016/j.difgeo.2016.11.007}}{0926-2245/ \odot 2016 Elsevier B.V. All rights reserved.}$

ABSTRACT

A ruled real hypersurface in a nonflat complex space form $\widetilde{M}_n(c)$ $(n \ge 2)$ of constant holomorphic sectional curvature $c \neq 0$ is, in a word, a real hypersurface having a foliation by totally geodesic complex hyperplanes $\widetilde{M}_{n-1}(c)$. In this paper, we investigate the sectional curvatures K of ruled real hypersurfaces in a complex hyperbolic space and show that such hypersurfaces are classified into two types with regard to the range of K.

@ 2016 Elsevier B.V. All rights reserved.

contact form on M. Every ruled real hypersurface in $\widetilde{M}_n(c)$ can be constructed in the following manner. We take an arbitrary regular real curve $\gamma: I \to \widetilde{M}_n(c)$ parametrized by its arclength s defined on some open interval $I(\subset \mathbb{R})$. At each point $\gamma(s)$ $(s \in I)$ we attach a complex hyperplane $M_s \cong \widetilde{M}_{n-1}(c)$ in such a way that the hyperplane M_s is orthogonal to the real plane spanned by $\dot{\gamma}(s)$ and $J\dot{\gamma}(s)$, where J denotes the Kähler structure of the ambient space. Then, we obtain a ruled real hypersurface $M = \bigcup_{s \in I} M_s$ in $\widetilde{M}_n(c)$. We call this M a ruled real hypersurface associated with γ . Since it may in general have singularities, we must omit such points.

Every ruled real hypersurface M must *not* be Hopf, that is, the characteristic vector field of M is not principal on its open dense subset (see Section 2). Moreover, this class of real hypersurfaces in a complex hyperbolic space $\mathbb{C}H^n(c)$ contains nice three examples, which are the minimal homogeneous one, the complete non-homogeneous minimal one and the non-complete non-homogeneous minimal one (for details, see [2]).

Needless to say that the sectional curvature is one of the most important geometric invariants in Riemannian geometry. It is well-known that every ruled surface in 3-dimensional Euclidean space \mathbb{R}^3 has nonpositive Gaussian curvature. So, we have naturally an interest in the sectional curvature of every ruled real hypersurface in a nonflat complex space form $\widetilde{M}_n(c)$. In [9], the authors showed that the sectional curvature Kof every ruled real hypersurface in $\mathbb{C}P^n(c)$ satisfies a sharp inequality $-\infty < K \leq c$. In this paper, we pay attention to ruled real hypersurfaces in $\mathbb{C}H^n(c)$ associated with smooth regular curves and investigate the sectional curvatures K of them. We shall show that such real hypersurfaces M are classified into two types with regard to the range of K, that is, M satisfies sharp inequalities either $-\infty < K \leq c/4$ or $c \leq K \leq c/4$ (Theorem in Section 4).

2. Preliminaries

First of all, we set up some notations. Let M be a real hypersurface of an $n \geq 2$ -dimensional nonflat complex space form $\widetilde{M}_n(c)$ endowed with Riemannian metric g and the canonical Kähler structure J through an isometric immersion. We denote by \mathcal{N} a unit normal local vector field on M and by A the shape operator of M in $\widetilde{M}_n(c)$. Then the Riemannian connections $\widetilde{\nabla}$ of $\widetilde{M}_n(c)$ and ∇ of M are related by Gauss and Weingarten formulas

$$\begin{cases} \widetilde{\nabla}_X Y = \nabla_X Y + g(AX, Y)\mathcal{N}, \\ \widetilde{\nabla}_X \mathcal{N} = -AX \end{cases}$$
(2.1)

for vector fields X and Y tangent to M. On the real hypersurface M, an almost contact metric structure (ϕ, ξ, η, g) associated with \mathcal{N} is naturally induced as

$$\xi = -J\mathcal{N}, \quad \eta(X) = g(X,\xi) \text{ and } \phi X = JX - \eta(X)\mathcal{N}$$

for each tangent vector $X \in TM$. We call ξ , ϕ and η the characteristic vector field, the characteristic tensor field and the contact form on M, respectively. It is well-known that they satisfy

$$\begin{cases} \eta(\xi) = 1, \quad \phi\xi = 0, \quad \eta \circ \phi = 0, \\ \phi^2 = -id + \eta \otimes \xi, \quad g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \end{cases}$$
(2.2)

and

$$\nabla_X \xi = \phi A X, \tag{2.3}$$

for all vectors $X, Y \in TM$.

Download English Version:

https://daneshyari.com/en/article/5773681

Download Persian Version:

https://daneshyari.com/article/5773681

Daneshyari.com