Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Hamilton type gradient estimate for a nonlinear diffusion equation on smooth metric measure spaces

Nguyen Thac Dung¹

Department of Mathematics, Mechanics and Informatics (MIM), Hanoi University of Sciences (HUS-VNU), No. 334, Nguyen Trai Road, Thanh Xuan, Hanoi, Vietnam

ABSTRACT

ARTICLE INFO

Article history: Received 7 April 2015 Received in revised form 14 December 2016 Communicated by V. Souček

MSC: primary 58J35 secondary 53C21

Keywords: Gradient estimate Nonlinear diffusion equation Bakry-Émery Ricci curvature Smooth metric measure spaces

1. Introduction

Let $(M, g, e^{-f} dv)$ be an *n*-dimensional complete non-compact smooth metric measure space. On M, we consider the nonlinear diffusion equation

$$u_t = \Delta u - \langle \nabla f, \nabla u \rangle - au \ln u + hu, \tag{1.1}$$

In this note, we show an Hamilton type gradient estimate for the solution of

time-dependent of nonlinear diffusion equation on smooth metric measure space

 $(M, q, e^{-f} dv)$. As the application, we show a dimension-free Harnack inequality

and prove a Liouville property for *f*-harmonic functions.

where $a \in \mathcal{C}(M)$, $f \in \mathcal{C}^2(M)$, and h = h(x,t) is a function defined on $M \times (0,\infty)$ which is \mathcal{C}^1 in the x-variable. When $f \equiv const$, the equation (1.1) is closely linked with the gradient Ricci solitons which are self-similar solutions to the Ricci flow introduced by R.S. Hamilton (see [6]).

Here we recall the definition of gradient Ricci solitons (see chapter 4 of [5]).

© 2017 Elsevier B.V. All rights reserved.

E-mail address: dungmath@gmail.com.

 $^{^1\,}$ The author was supported by NAFOSTED under grant number 101.02-2014.49.

Definition 1.1. A Riemannian manifold (M, g) is called a gradient Ricci soliton if there exists a smooth function $\varphi : M \to \mathbb{R}$, sometimes called potential function, such that for some constant $\lambda \in \mathbb{R}$, it satisfies

$$\operatorname{Ric}_g + \nabla^g \nabla^g \varphi = \lambda g \tag{1.2}$$

on M, where Ric_g is the Ricci curvature of manifold M and $\nabla^g \nabla^g \varphi$ is the Hessian of φ . A soliton is said to be shrinking, steady or expanding if the constant λ is respectively positive, zero or negative.

Assume that (M, g) is a gradient Ricci soliton as the above definition. Letting $u = e^{\varphi}$, under some curvature conditions, we can derive from (1.2) (see [11]) that

$$\Delta u + 2cu\ln u = (A_0 - n\lambda)u,$$

for some constant A_0 . Hence, the study of the equation (1.1) is of interest (see [3,7] and references therein).

In the case of weighted Laplacian, namely $f \not\equiv const$, recently, X.D. Li (see [10]), Q.H. Ruan (see [12]), and other mathematicians, for example [8], studied the linear heat equation (1.1) on a noncompact Riemannian manifold with assuming $a \equiv 0, h \leq 0$ and the Bakry-Émery Ricci curvature. Li studied gradient estimates of Li–Yau type, Ruan investigated gradient estimates of Hamilton type.

In particular, Ruan proved the following theorem.

Theorem 1.2 (Ruan). Let (M,g) be an n-dimensional complete noncompact manifold satisfying $\operatorname{Ric}_{m,n} \geq -K, K \geq 0$ is constant. Suppose that $a = 0, h \leq 0$ and that u is any positive solution to the nonlinear diffusion equation (1.1) with $u \leq C$, for all $(x,t) \in M \times (0,\infty)$. Then

$$\frac{|\nabla u|}{u} \le \left(\frac{1}{t^{1/2}} + \sqrt{2K} + \left|\nabla\sqrt{-h}\right|^{1/2}\right) \left(1 + \ln\left(\frac{C}{u}\right)\right)$$
(1.3)

Recall that the *m*-dimensional Bakry-Émery curvature $\operatorname{Ric}_{m,n}$ is defined by

$$\operatorname{Ric}_{m,n} := \operatorname{Ric} + \nabla^2 f - \frac{\nabla f \otimes \nabla f}{m-n}$$

When m tends to infinity, the m-dimensional Bakry-Émery becomes the Bakry-Émery curvature,

$$Ric_f := Ric + \nabla^2 f$$

Regarding to applications of equation (1.1) to study Ricci flow, we refer to [4,9] and references therein.

In this paper, we show a global Hamilton type gradient estimate for the positive solution of the nonlinear diffusion equation (1.1). Our main theorem can be stated as follows

Theorem 1.3 (Main theorem). Let $(M, g, e^{-f}dv)$ be an n-dimensional complete noncompact smooth metric measure space satisfying $Ric_f \ge -K, K \ge 0$ is constant. Suppose that u is any positive solution to the nonlinear diffusion equation (1.1) with $u \le C$ for all $(x, t) \in M \times (0, \infty)$.

a) If $h - a \ln C - a \le 0$ then

$$\frac{|\nabla u|}{u} \le \frac{1}{\sqrt{2}} \left(\frac{1}{t^{1/2}} + \sqrt{(2+C_2)K} + \sqrt{2} \left| \nabla \sqrt{-(h-a\ln C-a)} \right|^{1/2} \right) \left(1 + \ln\left(\frac{C}{u}\right) \right).$$
(1.4)

Download English Version:

https://daneshyari.com/en/article/5773692

Download Persian Version:

https://daneshyari.com/article/5773692

Daneshyari.com