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The Growth of Polynomials Outside of a Compact Set – the

Bernstein-Walsh Inequality Revisited

Klaus Schiefermayr∗

Abstract

In this paper, we present a new and simple proof of the classical Bernstein-Walsh
inequality. Based on this proof, we give some improvements for this inequality in the
case that the corresponding compact set is real.
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1 The Bernstein-Walsh Inequality

Let K be a compact set in the complex plane C with logarithmic capacity capK > 0.
Without loss of generality, we assume that K is such that C \ K is connected, where
C := C ∪ {∞} denotes the extended complex plane. Let gK(z) denote the Green function
(with pole at ∞) for C \ K and define gK(z) := 0 for z ∈ K. Furthermore, let Pn

denote the set of all polynomials of degree n with complex coefficients and let ∥ · ∥K

denote the supremum norm on K. Then the Bernstein-Walsh inequality (sometimes called
Bernstein-Walsh lemma or Bernstein lemma), see [8, Theorem5.5.7] or [11, Lemma 3.7]
or [7, Section 12.1], reads as follows.

Theorem 1 (Bernstein-Walsh inequality). For any polynomial Qn ∈ Pn,

|Qn(z)|
∥Qn∥K

≤ en·gK(z) (z ∈ C \ K). (1)

Note that inequality (1) is obviously also true for z ∈ K. Inequality (1) gives a very
general upper bound for the modulus of a polynomial outside a compact set K with
respect to its maximum value on K in terms of the corresponding Green function (which
only depends on K). It is also common to consider inequality (1) with the notion of the
level sets of the Green function gK(z). For each R ≥ 1, let

ΓR(K) :=
{
z ∈ C : gK(z) = log R

}
(2)

define the level set with index R for the Green function gK(z) (note that ΓR(K) = K for
R = 1). Then inequality (1) reads as

|Qn(z)|
∥Qn∥K

≤ Rn (z ∈ ΓR(K)). (3)
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