

Available online at www.sciencedirect.com

Journal of Approximation Theory

Journal of Approximation Theory 223 (2017) 77-95

www.elsevier.com/locate/jat

Full length article

Approximation properties of combination of multivariate averages on Hardy spaces

Dashan Fan^{a,b}, Fayou Zhao^{c,*}

^a Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
^b Department of Mathematics, Zhejiang Normal University, Jinhua 321000, China
^c Department of Mathematics, Shanghai University, Shanghai 200444, China

Received 11 August 2016; accepted 24 July 2017 Available online 14 August 2017

Communicated by Zeev Ditzian

Abstract

In this paper, we study the rate of approximation of the combination of some generalized multivariate average on Hardy spaces and obtain its equivalent relation to the *K*-functionals. The result is an extension of a result in Dai and Ditzian (2004). We also extend and improve Theorem 6.2 in Belinsky et al. (2003). © 2017 Elsevier Inc. All rights reserved.

MSC: 41A17; 41A63; 42B30 *Keywords: K*-functional; *H^p* space; Multivariate average; *H^p* Multiplier; Wave operator

1. Introduction

Let $\gamma \in \mathbb{R}$ and let I_{γ} be the Riesz potential of order γ defined on functions or distributions g via the Fourier transform

 $\widehat{I_{\gamma}(g)}(\xi) = |\xi|^{-\gamma} \widehat{g}(\xi).$

The Laplacian $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_n^2}$ on the *n*-dimensional Euclidean space \mathbb{R}^n satisfies $\Delta = -I_{-2}$.

* Corresponding author.

E-mail addresses: fan@uwm.edu (D. Fan), fyzhao@shu.edu.cn (F. Zhao).

http://dx.doi.org/10.1016/j.jat.2017.07.008

0021-9045/© 2017 Elsevier Inc. All rights reserved.

Fix a Schwartz function Φ satisfying

$$\int_{\mathbb{R}^n} \Phi(x) dx \neq 0.$$

The Hardy space $H^p(\mathbb{R}^n)$, 0 , is the space of all distributions f satisfying

$$\|f\|_{H^p(\mathbb{R}^n)} = \left\|\sup_{t>0} |\Phi_t * f|\right\|_{L^p(\mathbb{R}^n)} < \infty$$

where $\Phi_t(y) = t^{-n} \Phi(y/t)$ for t > 0. The space $H^p(\mathbb{R}^n)$ is a quasi-Banach space for any $0 and is a Banach space if <math>p \ge 1$. Particularly, we know that $H^p(\mathbb{R}^n) = L^p(\mathbb{R}^n)$ if 1 . $An important characterization of <math>H^p(\mathbb{R}^n)$, when 0 , is that it can be defined by using the Riesz transforms. For an integer <math>L > 0, and a multi-index $J = \{j_1, \ldots, j_L\} \in \{0, 1, 2, \ldots, n\}^L$, let $R_J(f)$ denote the generalized Riesz transform $R_J(f) = R_{j_1} \ldots R_{j_L}(f)$, where $R_j(f)$ is the *j*th Riesz transform of *f* if $j \ne 0$ and $R_0(f) = f$. It is known in [9, pp. 167–168] that for $p > \frac{n-1}{n-1+L}$ and all $f \in H^p(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$

$$||f||_{H^p(\mathbb{R}^n)} \approx \sum_{J \in \{0,1,2,\dots,n\}^L} ||R_J(f)||_{L^p(\mathbb{R}^n)}.$$

Hereafter, the notation $A \leq B$ means that there is a positive constant *C* independent of all essential variables such that $A \leq CB$. The notation $A \approx B$ means that there are two positive constants C_1 and C_2 independent of all essential variables such that $C_1A \leq B \leq C_2A$.

Suppose that t > 0, $\gamma > 0$, $0 and <math>f \in H^p(\mathbb{R}^n)$. Let us denote by $K_{\gamma}(f, t)_{H^p(\mathbb{R}^n)}$ the γ th order K-functional of f, that is,

$$K_{\gamma}(f,t)_{H^{p}(\mathbb{R}^{n})} = \inf_{g \in H^{p,\gamma}(\mathbb{R}^{n})} \left\{ \|f - g\|_{H^{p}(\mathbb{R}^{n})} + t^{\gamma} \|I_{-\gamma}(g)\|_{H^{p}(\mathbb{R}^{n})} \right\},$$

where

$$H^{p,\gamma}(\mathbb{R}^n) = \left\{ g \in H^p(\mathbb{R}^n) : \ I_{-\gamma}(g) \in H^p(\mathbb{R}^n) \right\},\$$

and we recall that $I_{-\gamma}(g)$ is defined through its Fourier transform

$$\overline{I}_{-\gamma}(g)(\xi) = |\xi|^{\gamma} \widehat{g}(\xi).$$

Similarly, for t > 0, $\gamma > 0$ and $1 \le p \le \infty$, we use the symbol $K_{\gamma}(f, t)_{L^{p}(\mathbb{R}^{n})}$ to denote the γ th order *K*-functional of *f*

$$K_{\gamma}(f,t)_{L^{p}(\mathbb{R}^{n})} = \inf_{g \in L^{p,\gamma}(\mathbb{R}^{n})} \left\{ \|f - g\|_{L^{p}(\mathbb{R}^{n})} + t^{\gamma} \|I_{-\gamma}(g)\|_{L^{p}(\mathbb{R}^{n})} \right\},$$

where

$$L^{p,\gamma}(\mathbb{R}^n) = \left\{ g \in L^p(\mathbb{R}^n) : I_{-\gamma}(g) \in L^p(\mathbb{R}^n) \right\}.$$

The K-functional of f, $K_{\gamma}(f, t)_{H^p}$ (resp. $K_{\gamma}(f, t)_{L^p}$), is used to measure the smoothness of fin H^p (resp. L^p) for different γ . Another measure, the modulus of smoothness of the *m*th order $\omega_m(f, t)_{H^p(\mathbb{R}^n)}$ is given by

$$\omega_m(f,t)_{H^p(\mathbb{R}^n)} = \sup_{|h| \le t} \left\| \sum_{j=0}^m (-1)^j \binom{m}{j} f(\cdot + jh) \right\|_{H^p(\mathbb{R}^n)}$$

where *m* is a nonnegative integer. If we replace the Riesz potential $I_{-\gamma}$ with the Bessel potential $\mathcal{J}_{-\gamma}$ which is defined by Fourier transform $\widehat{\mathcal{J}_{-\gamma}(f)}(\xi) = (1 + |\xi|^2)^{\gamma/2} \widehat{f}(\xi)$, then Colzani

Download English Version:

https://daneshyari.com/en/article/5773717

Download Persian Version:

https://daneshyari.com/article/5773717

Daneshyari.com