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Zeros of the Zak Transform of Averaged Totally
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St. Petersburg State University, 28, Universitetskii pr., St. Petersburg, 198504, Russia

Abstract

Let α > 0 and let g ∈ L1(R) be a continuous function, whose Fourier transform
is

ĝ(ω) = Ce−γω
2

e−2πiδω

( ∞∏

ν=1

e2πiδνω

1 + 2πiδνω

)


m∏

j=1

eλj−2πiαω − 1

λj − 2πiαω


 ,

where C > 0, γ > 0, δ, δν , λj ∈ R,
∞∑
ν=1

δ2
ν <∞, m ∈ Z+. We prove that its Zak

transform Zαg(x, ω) =
∑
k∈Z

g(x+ αk)e−2πikαω has only one zero (x∗, 1
2α ) in the

fundamental domain [0, α)×
[
0, 1

α

)
. In particular, the result is valid for totally

positive functions. Earlier it was known for such functions without the factor
e−γω

2

. We also establish simplicity of the zero with respect to each variable
and give the applications to Gabor analysis. The described class of functions is
closed under convolution.
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1. Introduction

We denote by C, R, Z, Z+ and N the sets of complex, real, integer, nonneg-
ative integer and natural numbers respectively; L1(R) is the space of Lebesgue
integrable on R functions, χE is the characteristic function of a set E. The
Fourier transform of a function f ∈ L1(R) is given by the formula

f̂(ω) =

∫

R

f(t)e−2πitω dt.

The convolution of two functions f and h is defined by

(f ∗ h)(x) =

∫

R

f(t)h(x− t) dt
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