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CNISM unità di Como.

Abstract

Minkowski’s question mark function is the distribution function of a singular continuous
measure: we study this measure from the point of view of logarithmic potential theory and
orthogonal polynomials. We conjecture that it is regular, in the sense of Ullman–Saff–Stahl–
Totik and moreover that it belongs to a Nevai class; we provide numerical evidence of the
validity of these conjectures. In addition, we study the zeros of its orthogonal polynomials
and the associated Christoffel functions, for which asymptotic formulae are derived. As a
by–product, we compute upper and lower bounds to the Hausdorff dimension of Minkowski’s
measure. Rigorous results and numerical techniques are based upon Iterated Function Sys-
tems composed of Möbius maps.
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1 Introduction: Minkowski’s Q function and its singular

measure

1.1 Theoretical setting and goals of the paper

Minkowski’s question–mark function Q(x) can be concisely defined—though not in the the most
transparent way—by writing the point x ∈ [0, 1] in its continued fraction representation, x =

[n1, n2, . . . , ], by setting Nj(x) =
∑j

l=1 nl, and by defining Q(x) as the sum of the series [18, 52]

Q(x) =

∞∑

j=1

(−1)j+12−Nj(x)+1. (1)

This function was originally constructed to map the rationals to the solutions of quadratic equa-
tions with rational coefficients in a continuous, order preserving way [45], but it successively
appeared that it has much wider implications in many fields of mathematics. A graph of Q(x)
is part of Figures 10 and 12 below. It is remarkable that this graph can be seen as the attractor
of an Iterated Function System (IFS) composed of Möbius maps [14], so that Q(x) also belongs
to the family of fractal interpolation functions [12, 13].

In this paper we are interested in the singular-continuous measure µ of which Q(x) is the
distribution function:

Q(x) =

∫ x

0

dµ. (2)
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