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Abstract

For k ≥ 2 even, and α ≥ −(2k + 1)/4, we provide a uniform approximation of the ultraspherical
polynomials P(α, α)

k (x) in the oscillatory region with a very explicit error term. In fact, our result covers
all α for which the expression “oscillatory region” makes sense. To that end, we construct the almost
equioscillating function g(x) = c

√
b(x) (1 − x2)(α+1)/2 P(α,α)

k (x) = cosB(x) + r (x). Here the constant
c = c(k, α) is defined by the normalization of P(α,α)

k (x), B(x) =
∫ x

0 b(x)dx , and the functions b(x) and
B(x), as well as bounds on the error term r (x), are given by some rather simple elementary functions.
c⃝ 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The ultraspherical polynomials we deal with in this paper will be convenient to define in terms
of Jacobi polynomials as P (α, α)

k (x), where we choose the standard normalization for the last
function. We will use the bold character P(α, α)

k (x) to denote the orthonormal Jacobi polynomials.
Since we are going to consider the case α ≤ −1 as well, let us notice that the right hand side of
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the formula

∥P (α, α)
k ∥

2
L2

=

∫ 1

−1
(1 − x2)α

(
P (α, α)

k (x)
)2

dx =
22α+1 Γ 2(k + α + 1)

(2k + 2α + 1)Γ (k + 2α + 1)k!
,

and therefore the orthonormal normalization, still make sense as far as α > −
k+1

2 .
Here we will establish a uniform approximation of the ultraspherical polynomials in the

oscillatory region with an explicit error term for a vast range of the parameter α, in fact, for
all α for which the expression “oscillatory region” makes sense. A few standard formulas we are
using in the sequel may be found e.g. in [12, sec. 4].

Generally, the oscillatory region is an interval containing all but maybe a few of the extreme
zeros of a polynomial. In fact, besides the simplest case of the Chebyshev polynomials, there are
no global asymptotic approximations of the classical orthogonal polynomials on the whole real
axis. One has to split it into the oscillatory, transition and monotonicity regions, working with
each of them separately. Theorem 8.22.9 in [12] related to the Hermite case may serve as a good
example of this subdivision.

There are a number of known asymptotic approximations for the Jacobi polynomials under
these or those restrictions on the parameters α and β, starting from the classical case |α|, |β| ≤

1/2 considered in Szegö’s book [12], or, for example, more recent results with asymptotically
constant ratios of α/k and β/k (see e.g. [11,13] and references therein). However, if one is
interested in uniform bounds, the situation becomes less studied, and we refer to the recent
preprint [6] and the references therein for a review of known results.

To simplify otherwise complicated expressions in the sequel we introduce the following new
parameters:

u = (k + α)(k + α + 1), q = (α2
− 1)/u, (1)

which turn out to be quite natural in this context.
We start with the normal form of the differential equation for the ultraspherical polynomials

y′′
+ b2 y = 0, y = (1 − x2)(α+1)/2 P (α, α)

k (x), (2)

where

b = b(x) =

√
(1 − q − x2)u

1 − x2 , (3)

and define the function

g(x) =

√
b(x) y(x), (4)

that, as we will show, almost equioscillates in the interval |x | <
√

1 − q .
Our main result is the following Theorem 1 that provides a uniform approximation of g(x)

for k even in the oscillatory region with a very explicit error term. The corresponding result for
k odd may be readily obtained from e.g. the three term recurrence. To simplify the statement of
the theorem involving multivalued functions, without loss of generality we will restrict ourselves
to the case x ≥ 0.

Theorem 1. Let k ≥ 2 be even and let x belong to one of the following intervals depending on
the value of α:

(i) 0 ≤ x ≤

√
1 −

1
u , |α| <

√
7
6 ;

(ii) 0 ≤ x ≤
√

1 − q, α ∈
[
−

2k+1
4 ,−

√
7
6

] ⋃ [√ 7
6 ,∞

)
.
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