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Abstract. We prove two new universality results for polynomial reproducing kernels of
compactly supported measures. The first applies to measures on the unit circle with a jump
and a singularity in the weight at 1 and the second applies to area-type measures on a
certain disconnected polynomial lemniscate. In both cases, we apply methods developed by
Lubinsky to obtain our results.
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1. Introduction

1.1. Background and Results. Given a finite, positive, and compactly supported measure
µ with infinitely many points in its support, let {ϕn(z)}∞n=0 be the corresponding sequence
of orthonormal polynomials satisfying∫

ϕn(z)ϕm(z)dµ(z) = δm,n.

The leading coefficient of ϕn is κn and ϕn/κn is a monic polynomial, which we denote by
Φn. If ever it is necessary to specify the measure of orthogonality, we will write ϕn(z;µ),
Φn(z;µ), and κn(µ). The degree n polynomial reproducing kernel Kn is given by

Kn(z, w;µ) :=
n∑

m=0

ϕm(z)ϕm(w)

and is so named because if Q(z) is a polynomial of degree at most n, then
∫
Q(z)Kn(w, z;µ)dµ(z) = Q(w).

When one speaks of universality limits for such kernels, one is interested in determining
existence of the limit

lim
n→∞

Kn(z + ε1(n), z + ε2(n);µ)

Kn(z, z;µ)
, (1)

where εj(n) → 0 as n → ∞ in a specific way for j = 1, 2. The motivation for calculating
such limits comes from random matrix theory and we refer the reader to [9, 25] for further
details. The term “universality” is used when one can establish existence of the limit (1)
for a large class of measures µ and points z ∈ supp(µ) in such a way that the limiting
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