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PERIODIC PERTURBATIONS OF UNBOUNDED JACOBI MATRICES
II: FORMULAS FOR DENSITY

GRZEGORZ ŚWIDERSKI

Abstract. We give formulas for the density of the measure of orthogonality for or-
thonormal polynomials with unbounded recurrence coefficients. The formulas involve
limits of appropriately scaled Turán determinants or Christoffel functions. Exact asymp-
totics of the polynomials and numerical examples are also provided.

1. Introduction

Consider a sequence (pn : n ∈ N) of polynomials defined by

(1)
p−1(x) = 0, p0(x) = 1,

an−1pn−1(x) + bnpn(x) + anpn+1(x) = xpn(x) (n ≥ 0)

for sequences a = (an : n ∈ N) and b = (bn : n ∈ N) satisfying an > 0 and bn ∈ R. The
sequence (1) is orthonormal in L2(µ) for a Borel measure µ on the real line. We are
interested in the case when the sequence a is unbounded and the measure µ is unique.
When it holds, we want to find conditions on the sequences a and b assuring absolute
continuity of µ and a constructive formula for its density.

In the case when the sequences a and b are bounded, there are several approaches to
an approximation of the density of µ. One is obtained by means of N -shifted Turán
determinants, i.e. expressions of the form

DN
n (x) = pn(x)pn+N−1(x)− pn−1(x)pn+N(x)

for positive N (see [21, 10, 26]). Another by Christoffel functions, i.e.

λn(x) =

[ n∑

k=0

p2
k(x)

]−1

(see [20, 25]).
In the unbounded case there is a vast literature concerning qualitative properties of

µ such as: its support, absolute continuity or continuity of µ, localization of its discrete
part, see, e.g. [4, 6, 7, 14, 15, 16, 27]. As far as the approximation of µ is concerned, the
only result known to the author is [1]. In Section 3 we prove the following theorem.
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