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Abstract

It is shown that two conditions f (a + ·) − f (·) ∈ L p(R), and (sin b·) f (·) ∈ L p(R) guarantee
f ∈ L p(R), 1 ≤ p < ∞, if and only if ab is not in (πZ).
c⃝ 2016 Elsevier Inc. All rights reserved.
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1.

Let a measurable function f on R = (−∞, ∞) have properties

∀ t ∈ R, f (t + ·) − f (·) ∈ L2(R), (1a)
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and

∀ s ∈ R, sin(s·) f (·) ∈ L2(R). (1b)

If a Fourier transform f is reasonably defined then (1b) is equivalent to (1a) for f .

Claim 1. Under conditions (1a), (1b) we have f ∈ L2(R).

Recently, A. M. Vershik brought attention of the 25th St. Petersburg Summer Meeting in
Mathematical Analysis, June 25–30, 2016, to Claim 1. He recalled that the known proof “was
done in terms of representation theory (of Heisenberg group) many years ago” but noted that
“the simple proof still does not exist” and after many years it is important “to give a simple and
direct proof”.2 A stronger form of Claim 1 and its elementary proof was given just during the
Meeting’s session of A. Vershik’s talk on June 30. It is presented in Section 2. If the reader wants
a proof only of Claim 1, there is no need to go beyond Section 2.

2.

Claim 2. Let f be a measurable function on R, and the following two conditions hold:

∆(x) = f


x +
π

2


− f (x) ∈ L2(R). (2a)

f (x) · sin(x) ∈ L2(R) (2b)

Then f ∈ L2(R).

Proof. Put E = {x : |x − kπ | ≤ 10−6 for some k ∈ Z}. Then |
1

sin x | ≤
1

sin δ
≤ 107 on E{

=

R \ E, δ = 10−6, so

f | E{
= (sin x · f (x)) ·

1
sin x

∈ L2(E{). (3)

With 2δ < π
2 we have E +

π
2 ⊂ E{ and f (x) = f (x +

π
2 ) − ∆(x) for x ∈ E ; therefore

∥ f |E∥ ≤ ∥ f |E{
∥ + ∥∆∥ < ∞, and together with (3) and (2a) we have f ∈ L2(R). �

3.

Section 2 is an almost stenographic recording of what I have said at the Meeting’s June 30
session. Now we will talk about a more general setting (sorry, some repetition is unavoidable)
and get negative results (Proposition 5 and Example 8) as well. Of course, L2-norm is not special
in our analysis in Section 2. Instead of L2 we can talk about any Banach space X of measurable
functions on R with two properties:

g ∈ X ⇒ g(· + t) ∈ X, t ∈ R (4a)

g ∈ X ⇒ g · h ∈ X, ∀h ∈ L∞(R). (4b)

Moreover, we do not need global conditions (1a), (1b); just a pair (t; s) =


π
2 ; 1


with (2a), (2b)

holding was good enough for the proof in Section 2. More general than Claim 2 is true:

2 The presentation [2] gives a more extended motivation and links to the uncertainty principle although no reference
to a published source is given.
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