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a b s t r a c t

Most commonly used adaptive algorithms for univariate real-
valued function approximation and global minimization lack
theoretical guarantees. Our new locally adaptive algorithms are
guaranteed to provide answers that satisfy a user-specified
absolute error tolerance for a cone, C, of non-spiky input functions
in the Sobolev space W 2,∞

[a, b]. Our algorithms automatically
determine where to sample the function—sampling more densely
where the secondderivative is larger. The computational cost of our
algorithm for approximating a univariate function f on a bounded
interval with L∞-error no greater than ε is O


∥f ′′∥ 1

2
/ε


as ε→

0. This is the same order as that of the best function approximation
algorithm for functions in C. The computational cost of our global
minimization algorithm is of the same order and the cost can
be substantially less if f significantly exceeds its minimum over
muchof the domain. OurGuaranteedAutomatic Integration Library
(GAIL) contains these new algorithms. We provide numerical
experiments to illustrate their superior performance.
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1. Introduction

Our goal is to reliably solve univariate function approximation and global minimization problems
by adaptive algorithms. We prescribe a suitable set, C, of continuously differentiable, real-valued
functions defined on a finite interval [a, b]. Then, we construct algorithms A : (C, (0,∞))→ L∞[a, b]
and M : (C, (0,∞))→ R such that for any f ∈ C and any error tolerance ε > 0,

∥f − A(f , ε)∥ ≤ ε, (APP)

0 ≤ M(f , ε)− min
a≤x≤b

f (x) ≤ ε. (MIN)

Here, ∥·∥ denotes the L∞-norm on [a, b], i.e., ∥f ∥ = supx∈[a,b] |f (x)|. Algorithms A and M depend
only on function values.

Our algorithms proceed iteratively until their data-dependent stopping criteria are satisfied. The
input functions are sampled nonuniformly over [a, b], with the sampling density determined by the
function data. We call our algorithms locally adaptive, to distinguish them from globally adaptive
algorithms that have a fixed sampling pattern and only the sample size determined adaptively.

1.1. Key ideas in our algorithms

Our Algorithms A and M are based on a linear spline, S(f , x0:n) defined on [a, b]. Let 0 : n be
shorthand for {0, . . . , n}, and let x0:n be any ordered sequence of n + 1 points that includes the
endpoints of the interval, i.e., a =: x0 < x1 < · · · < xn−1 < xn := b. We call such a sequence a
partition. Then given any x0:n and any i ∈ 1 : n, the linear spline is defined for x ∈ [xi−1, xi] by

S(f , x0:n)(x) :=
x− xi

xi−1 − xi
f (xi−1)+

x− xi−1
xi − xi−1

f (xi). (1)

The error of the linear spline is bounded in terms of the second derivative of the input function as
follows [2, Theorem 3.3]:

∥f − S(f , x0:n)∥[xi−1,xi] ≤
(xi − xi−1)2

f ′′
[xi−1,xi]

8
, i ∈ 1 : n, (2)

where ∥f ∥[α,β] denotes the L∞-norm of f restricted to the interval [α, β] ⊆ [a, b]. This error bound
leads us to focus on input functions in the Sobolev space W 2,∞

:= W 2,∞
[a, b] := {f ∈ C1

[a, b] :f ′′ <∞}.
Algorithms A and M require upper bounds on

f ′′
[xi−1,xi]

, i ∈ 1 : n, to make use of (2). A

nonadaptive algorithm might assume that
f ′′ ≤ σ , for some known σ , and proceed to choose

n =

(b − a)

√
σ/(8ε)


, xi = a + i(b − a)/n, i ∈ 0 : n. Providing an upper bound on

f ′′ is often
impractical, and so we propose adaptive algorithms that do not require such information.

However, one must have some a priori information about f ∈ W 2,∞ to construct successful
algorithms for (APP) or (MIN). Suppose that Algorithm A satisfies (APP) for the zero function f = 0,
and A(0, ε) uses the data sites x0:n ⊂ [a, b]. Then one can construct a nonzero function g ∈ W 2,∞

satisfying g(xi) = 0, i ∈ 0 : n but with ∥g − A(g, ε)∥ = ∥g − A(0, ε)∥ > ε.
Our set C ⊂ W 2,∞ for which A and M succeed includes only those functions whose second

derivatives do not change dramatically over a short distance. The precise definition of C is given in
Section 2. This allows us to use second-order divided differences to construct rigorous upper bounds
on the linear spline error in (2). These data-driven error bounds inform the stopping criteria for
Algorithm A in Section 3.1 and Algorithm M in Section 4.1.

The computational cost of AlgorithmA is analyzed in Section 3.2 and is shown to beO

∥f ′′∥ 1

2
/ε


as ε → 0. Here, ∥·∥ 1

2
denotes the L

1
2 -quasi-norm, a special case of the Lp-quasi-norm, ∥f ∥p := b

a |f |
p dx

1/p, 0 < p < 1. Since
f ′′ 1

2
can be much smaller than

f ′′, locally adaptive
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