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a b s t r a c t

We study the error in approximating the minimum of a Brownian
motion on the unit interval based on finitely many point
evaluations. We construct an algorithm that adaptively chooses
the points at which to evaluate the Brownian path. In contrast
to the 1/2 convergence rate of optimal nonadaptive algorithms,
the proposed adaptive algorithm converges at an arbitrarily high
polynomial rate.
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1. Introduction

We study the pathwise approximation of the minimum

M = inf
0≤t≤1

W (t)

of a Brownian motion W on the unit interval [0, 1] based on adaptively chosen function values ofW .
In contrast to nonadaptive algorithms, which evaluate a function always at the same points, adaptive
algorithmsmay sequentially choose points atwhich to evaluate the function. For the present problem,
this means that the nth evaluation site may depend on the first n−1 observed values of the Brownian
pathW . Given a number of evaluation sites, we are interested in algorithms that have a small error in
the residual sense with respect to the Lp-norm.
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A key motivation for studying this approximation problem stems from numerics for the reflected
Brownian motion given by

Ŵ (t) = W (t) − inf
0≤s≤t

W (s).

Apart from its use in queueing theory [11], the reflected Brownian motion also appears in the context
of nonlinear stochastic differential equations. More precisely, the solution process of a particular
instance of a Cox–Ingersoll–Ross process is given by the square of Ŵ . Hence numerical methods
for the approximation of M can be used for the approximation of Ŵ and thus for the corresponding
Cox–Ingersoll–Ross process. We refer to [7] for such an application of the algorithm proposed in this
paper.

The complexity analysis of pathwise approximation of the BrownianminimumM based on finitely
many function evaluations was initiated in [18], where it was shown that for any nonadaptive
algorithm using n function evaluations the average error is at least of order n−1/2. Moreover, a simple
equidistant discretization already has an error of order n−1/2, and thus achieves the lower bound for
nonadaptive algorithms. A detailed analysis of the asymptotics of the pathwise error in case of an
equidistant discretization was undertaken in [1].

The situation regarding adaptive algorithms for the pathwise approximation of M is rather
different. In [5], it was shown that for any (adaptive) algorithm using n function evaluations the
average error is at least of order exp(−c n/ log(n)) for some positive constant c . In contrast to the
nonadaptive case, we are unaware of algorithms with error bounds matching the lower bound for
adaptive algorithms. In this paper we analyze an adaptive algorithm that has an average error at
most of order n−r , for any positive number r . Hence this algorithm converges at an arbitrarily high
polynomial rate. In [6], the same algorithm was shown to converge in a probabilistic sense. We are
unaware of previous results showing the increasedpower of adaptivemethods relative to nonadaptive
methods with respect to the Lp-error.

Several optimization algorithms have been proposed that use the Brownian motion as a model for
an unknown function to be minimized, including [9,12,24,3]. One of the ideas proposed in [9] is to
evaluate the function next at the point where the function has the maximum conditional probability
of having a value less than the minimum of the conditional mean, minus some positive amount
(tending to zero). This is the same idea behind our algorithm, described in Section 2. The question
of convergence of such (Bayesian) methods in general is addressed in [13]. Several algorithms, with
an emphasis on the question of convergence, are described in [21].

In global optimization, the function to be optimized is typically assumed to be a member of some
class of functions. Often, the worst-case error of algorithms on such a class of functions is studied.
However, if the function class is convex and symmetric, then the worst-case error for any method
using n function evaluations is at least as large as the error of a suitable nonadaptive method using
n + 1 evaluations, see, e.g., [14, Chap. 1.3]. In this case, a worst-case analysis cannot justify the use
of adaptive algorithms for global optimization. An average-case analysis, where it is assumed that
the function to be optimized is drawn from a probability distribution, is an alternative to justify
adaptive algorithms for general function classes. For a comprehensive introduction to average-case
analysis, including the problem of global optimization, we refer to [14,22,19]. Brownian motion is
suitable for such an average-case study since its analysis is tractable, yet the answers to the complexity
questions are far from obvious. As already explained, adaptivemethods aremuchmore powerful than
nonadaptive methods for optimization of Brownian motion.

This paper is organized as follows. In Section 2 we present our algorithmwith corresponding error
bound, see Theorem 1. In Section 3 we illustrate our results by numerical experiments. The rest of the
paper is devoted to proving Theorem 1.

2. Algorithm and main result

Let f : [0, 1] → R be a continuous function with f (0) = 0. We will recursively define a sequence

t0, t1, . . . ∈ [0, 1] (1)
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