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a b s t r a c t

In this paper we give lower bounds for the representation of real
univariate polynomials as sums of powers of degree 1 polynomi-
als. We present two families of polynomials of degree d such that
the number of powers that are required in such a representation
must be at least of order d. This is clearly optimal up to a constant
factor. Previous lower bounds for this problem were only of order
Ω(

√
d), and were obtained from arguments based on Wronskian

determinants and ‘‘shifted derivatives’’. We obtain this improve-
ment thanks to a new lower bound method based on Birkhoff in-
terpolation (also known as ‘‘lacunary polynomial interpolation’’).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we obtain lower bounds for the representation of a univariate polynomial f ∈ R[X]

of degree d under the form:

f (x) =

l
i=1

βi(x + yi)ei (1)

where the βi, yi are real constants and the exponents ei nonnegative integers.
We give two families of polynomials such that the number l of terms required in such a represen-

tationmust be at least of order d. This is clearly optimal up to a constant factor. Previous lower bounds
for this problem [12] were only of order Ω(

√
d). The polynomials in our first family are of the form
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H1(x) =
k

i=1 αi(x + xi)d with all αi nonzero and the xi’s distinct. We show that they require at least
l ≥ k terms whenever k ≤ (d+2)/4. In particular, for k = (d+2)/4 we obtain l = k = (d+2)/4 as a
lower bound. The polynomials in our second family are of the form H2(x) = (x+ 1)d+1

− xd+1 and we
show that they require more than (d − 1)/2 terms. This improves the lower bound for H1 by a factor
of 2, but this second lower bound applies only when the exponents ei are required to be bounded by d
(obviously, if larger exponents are allowedwe only need two terms to representH2). It is easily shown
that every polynomial of degree d can be represented with ⌈(d + 1)/2⌉ terms. This implies that of all
polynomials of degree d,H2 is essentially (up to a small additive constant) the hardest one.

Our lower bound results are specific to polynomials with real coefficients. It would be interesting
to obtain similar lower bounds for other fields, e.g., finite fields or the field of complex numbers. As an
intermediate step toward our lower bound theorems, we obtain a result on the linear independence
of polynomials which may be of independent interest.

Theorem 1. Let f1, . . . , fk ∈ R[X] be k distinct polynomials of the form fi(x) = (x + ai)ei . Let us denote
by nj the number of polynomials of degree less than j in this family.

If n1 ≤ 1 and nj + nj−1 ≤ j for all j, the family (fi) is linearly independent.

We will see later (in Section 4, Remark 17) that this theorem is optimal up to a small additive
constant when d is even, and exactly optimal when d is odd.

Motivation and connection to previous work

Lower bounds for the representation of univariate polynomials as sums of powers of low degree
polynomials were recently obtained in Kayal et al. [12]. We continue this line of work by focusing
on powers of degree one polynomials. This problem is still challenging because the exponents ei may
be different from d = deg(f ), and may be possibly larger than d. The lower bounds obtained in Kayal
et al. [12] are of orderΩ(

√
d). We obtainΩ(d) lower boundswith a newmethod based on polynomial

interpolation (more on this below).
The work in Kayal et al. [12] and in the present paper is motivated by recent progress in arithmetic

circuit complexity. It was shown that strong enough lower bounds for circuits of depth four [1,15,20]
or even depth three [10,20] would yield a separation of Valiant’s [21] algebraic complexity classes
VP and VNP. Moreover, lower bounds for such circuits were obtained thanks to the introduction by
Neeraj Kayal of the method of shifted partial derivatives, see e.g. [11,8,9,13,14,16,17]. Some of these
lower bounds seem to come close to separating VP from VNP, but there is evidence that themethod of
shifted derivatives by itself will not be sufficient to achieve this goal. In fact, this method cannot prove
more than a 1.5m2 lower bound on the determinantal complexity of the m × m permanent [7]. It is
therefore desirable to develop new lower boundsmethods.We view themodels studied in Kayal et al.
[12] and in the present paper as ‘‘test beds’’ for the development of such methods in a fairly simple
setting. We note also that (as explained above) strong lower bounds in slightly more general models
would imply a separation of VP from VNP. Indeed, if the affine functions x + yi in (1) are replaced
by multivariate affine functions we obtain the model of ‘‘depth 3 powering arithmetic circuits’’. In
general depth 3 arithmetic circuits, instead of powers of affine functionswe have products of (possibly
distinct) affine functions. We note that the depth reduction result of Gupta et al. [10] yields circuits
where the number of factors in such products can be much larger than the degree of the polynomial
represented by the circuit. It is therefore quite natural to allow exponents ei > d in (1). Likewise, the
model studied in Kayal et al. [12] is close to depth 4 arithmetic circuits, see Kayal et al. [12] for details.

Birkhoff interpolation

As mentioned above, our results are based on polynomial interpolation and more precisely on
Birkhoff interpolation (also known as ‘‘lacunary interpolation’’). The most basic form of polynomial
interpolation is Lagrange interpolation. In a typical Lagrange interpolation problem, one may have to
find a polynomial g of degree at most 2 satisfying the 3 constraints g(−1) = 1, g(0) = 4, g(1) = 3.
At a slightly higher level of generality we find Hermite interpolation, where at each point we must
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