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a b s t r a c t

We study the solution of two-point boundary-value problems for
second order ODEs with boundary conditions imposed on the first
derivative of the solution. The right-hand side function g is as-
sumed to be r times (r ≥ 1) continuously differentiable with the
rth derivative being a Hölder function with exponent ϱ ∈ (0, 1].
The boundary conditions are defined through a continuously differ-
entiable function f . We define an algorithm for solving the problem
with error of order m−(r+ϱ) and cost of order m logm evaluations
of g and f and arithmetic operations, where m ∈ N. We prove that
this algorithm is optimal up to the logarithmic factor in the cost.
This yields that the worst-case ε-complexity of the problem (i.e.,
the minimal cost of solving the problem with the worst-case error
at most ε > 0) is essentially Θ((1/ε)1/(r+ϱ)), up to a log 1/ε factor
in the upper bound. The same bounds hold for r + ϱ ≥ 2 even if
we additionally assume convexity of g . For r = 1, ϱ ∈ (0, 1] and
convex functions g , the information ε-complexity is shown to be
Θ((1/ε)1/2).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We consider the solution of a boundary-value problem with Neumann boundary conditions

u′′(x) = g(u(x)), x ∈ [0, T ], u′(0) = 0, u′(T ) = f (u(T )), (1)

✩ This research was partly supported by the Polish NCN grant – decision No. DEC-2013/09/B/ST1/04275 and by the Polish
Ministry of Science and Higher Education.

E-mail address: kacewicz@agh.edu.pl.

http://dx.doi.org/10.1016/j.jco.2016.02.005
0885-064X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jco.2016.02.005
http://www.elsevier.com/locate/jco
http://www.elsevier.com/locate/jco
mailto:kacewicz@agh.edu.pl
http://dx.doi.org/10.1016/j.jco.2016.02.005


2 B. Kacewicz / Journal of Complexity ( ) –

where T > 0 and g, f are real functions of a real variable u, u ≥ 0.We look for a nonnegative function
u satisfying (1). The ODE problem (1) is related to stationary solutions of the heat PDE, which in turn
models some physical, engineering processes or chemical reactions.

In general, the ε-complexity of ODEs, i.e., the minimal cost of computing an ε-approximation, is
well studied in the casewhen initial conditions are imposedon the solution. The results are established
in thedeterministic, randomized andquantumsettings, see e.g. [1,9,10,12] or [13]. Less is knownabout
the solution of ODEs with boundary conditions, where most results deal with the Dirichlet case, see
e.g. [11] or [7].

An efficient solution of the Neumann problem (1) under different conditions on g and f is recently
a topic of a number of papers, see e.g., [5,2–4] or [6]. Some results, e.g., those in the recent paper [6],
establish under certain assumptions on g and f upper bounds on the ε-complexity of (1). The authors
consider in [6] function g possessing two continuous derivatives with g ′′ satisfying the Lipschitz
condition, and a constant function f . The general idea is to formulate the problem as a nonlinear
equation in a Banach space with the solution u. Then, the (abstract) Newton method is used and
next discretized using a mesh independence principle. This leads to a finite dimensional problem
with many variables. Taking care of the choice of an initial approximation and convergence of the
Newton method, the authors arrive at an algorithm that computes an ε-approximation with cost
O((1/ε)1/2 log log 1/ε) evaluations of g and arithmetic operations.

In the present paper we consider functions g possessing r continuous derivatives (r ≥ 1) with the
rth derivative satisfying the Hölder condition with exponent ϱ ∈ (0, 1]. The function f is assumed
to be a C1 nonincreasing function, see the next section for precise definitions. The problem studied
in [6] corresponds to the case r = 2, ϱ = 1, and a constant function f . We use a solution method
based on ‘shooting’, i.e., on considering a basic scalar nonlinear equation (4) corresponding to (1) and
a proper method for solving IVPs. This leads us to an almost optimal algorithm for solving (1) which
only requires scalar computations.

The results of this paper are as follows.We define an algorithm for solving the second order IVPs (3)
corresponding to (1) based on the idea of the approximate Picard iterations used e.g. in [1], and prove
a convergence result in Proposition 1. Using (4), the bisection method and the algorithm for IVPs, we
define the algorithm Φ∗

m for the problem (1) (m → ∞). In Theorem 1 we prove upper bounds on the
error and cost of Φ∗

m, both individually for given g and f and for the worst-case in the classes Gr,ϱ and
F of these functions. The error of Φ∗

m is shown to be O(m−(r+ϱ)), and the cost O(m logm) evaluations
of g , f and arithmetic operations, asm → ∞.

We next study the optimality of Φ∗
m. We prove in Theorem 2 that the worst-case error in Gr,ϱ

and F of any algorithm using m evaluations of g and f or their derivatives is at least Ω(m−(r+ϱ)). For
r + ϱ ≥ 2, this holds even in a smaller class of convex functions Ĝr,ϱ . For r = 1 and ϱ ∈ (0, 1), in
the smaller class Ĝ1,ϱ we get the lower bound Ω(n−2). This means that Φ∗

m is optimal in the class of
functions Gr,ϱ up to the logm factor in the cost. The same holds for the class Ĝr,ϱ with r+ϱ ≥ 2. In the
case r = 1 and ϱ ∈ (0, 1] in the class Ĝ1,ϱ we define a modified algorithm Φ∗∗

m with error O(m−2) and
cost O(m), which closes the gap between lower and upper bounds (Proposition 1a and Theorem 1a).
Finally, Theorem 3 contains the resulting upper and lower ε-complexity bounds for the problem (1)
in the classes Gr,ϱ and Ĝr,ϱ . They are of order (1/ε)1/(r+ϱ) from below, and (1/ε)1/(r+ϱ) log 1/ε from
above for Gr,ϱ , and for Ĝr,ϱ with r + ϱ ≥ 2. In the class Ĝ1,ϱ with ϱ ∈ (0, 1], the information ε-
complexity is Θ((1/ε)1/2). In Remark 2 at the end of Section 5 we give an idea how to get rid of the
logarithmic factors that are present in the upper bounds on the information ε-complexity.

Let us note that the authors of [6], in the special case r = 2, ϱ = 1 and f being a constant
function, obtained the complexity bound O((1/ε)1/2 log log 1/ε). For the same parameters r and ϱ,
under weaker assumptions on f , we get the bound O((1/ε)1/3 log 1/ε) (which is also shown to be the
best possible up to the logarithmic factor). This is an improvement over [6], which is possible due to
making use of the Lipschitz continuity of g ′′. See also Remark 1 at the end of Section 4.

The paper is organized as follows. Section 2 is devoted to the definitions of the classes of functions
under consideration, the errors and the ε-complexity. We summarize there the main results of the
paper (Theorems 1, 1a, 2 and 3). In Section 3 we define algorithms for (4) and the algorithms Φ∗

m and
Φ∗∗

m for (1). Propositions 1 and 1a contain the IVPs convergence results. The proofs of Propositions 1, 1a
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