

Available online at www sciencedirect com

ScienceDirect

J. Differential Equations ••• (••••) •••-•••

Journal of Differential Equations

www.elsevier.com/locate/jde

Very singular solution and short time asymptotic behaviors of nonnegative singular solutions for heat equation with nonlinear convection [☆]

Guofu Lu

Institute of Applied Mathematics, Putian University, Putian 351100, Fujian, China Received 16 November 2016; revised 30 May 2017

Abstract

In this paper we study the following Cauchy problem:

$$u_t = u_{xx} + (u^n)_x, \quad (x, t) \in \mathbb{R} \times (0, \infty),$$

 $u(x, 0) = 0, \quad x \neq 0,$

where parameter $n \ge 0$. Its nonnegative solution is called singular solution when u(x,t) satisfies the equation in the sense of distribution, initial conditions in the classical sense and also u(x,t) exhibits a singularity at the origin (0,0). As we know, the singular solution is called source-type solution if the initial is $M\delta(x)$, where $\delta(x)$ is Dirac measure and constant M>0. The solution is called very singular solution if it possesses more singularity than that of source-type solution at the origin. Here we focus on what happens in the interactive effect between the diffusion and convection in a whole physical process. We find critical values $n_2 < n_1 < n_0$ such that there exists unique source-type solution in the exponent range of $0 < n < n_0$, while there exists no nonnegative singular solution if $n \ge n_0$. Only in the case of $n_2 < n < n_1$ there exists a very singular solution, but in the case of $n \ge n_1$ or $n \le n_2$ there is no solution that exhibits more singular than source-type solution at the origin. Furthermore we describe the short time asymptotic behavior of the singular solutions when such Cauchy problem is solvability for source-type solution or very singular solution.

© 2017 Elsevier Inc. All rights reserved.

E-mail address: gflu@sina.com.

http://dx.doi.org/10.1016/j.jde.2017.07.030

0022-0396/© 2017 Elsevier Inc. All rights reserved.

Please cite this article in press as: G. Lu, Very singular solution and short time asymptotic behaviors of nonnegative singular solutions for heat equation with nonlinear convection, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.07.030

 $^{^{\}pm}$ The research of this author was supported by NNFS of China under Grant No. 11471175, No. 10671103 and No. 11001142.

G. Lu / J. Differential Equations ••• (•••) •••-••

MSC: 35K15; 35K55; 35K65

Keywords: Nonlinear convection; Source-type solution; Very singular solution; Critical exponent; Asymptotic behaviors; Entropy inequality

1. Introduction

In this paper we consider the singular nonnegative solutions of the heat equation with nonlinear convection

$$u_t = u_{xx} + (u^n)_x$$
, in $S_T = \mathbb{R} \times (0, T)$, (1.1)

where $n \ge 0$, with initial conditions

$$u(x, 0) = 0 \text{ for } x \neq 0,$$
 (1.2)

and u(x, t) may exhibit a singularity at origin (0, 0). This means a function u(x, t) which is defined, nonnegative and continuous in $\bar{S}_T \setminus \{(0, 0)\}$, satisfies (1.1) in the sense of distribution and initial condition (1.2) in the classical sense, and is uniformly bounded in x for every $t \in (0, T)$.

A typical singular solution of (1.1) is source-type solution.

Definition 1. For some constant M > 0, a function $u_M(x, t)$ defined in $S_T = \mathbb{R} \times (0, T)$ (T > 0) is called a source-type solution of (1.1), if and only if:

- (i) $u_M(x,t)$ is nonnegative, continuous in $\overline{S_T} \setminus \{(0,0)\}$ and bounded in $\overline{S_T^{\tau}} = \mathbb{R} \times [\tau, T]$ for any $\tau: 0 < \tau < T$;
- (ii) $u_M(x,t)$ satisfies (1.1) in the sense of distribution and (1.2) in classical sense;
- (iii) $u_M(x, 0) = M\delta(x)$ in the sense of distribution, i.e.,

$$\lim_{\tau \to +0} \int_{-\infty}^{\infty} u_M(x,\tau)\eta(x)dx = M\eta(0)$$
 (1.3)

for any $\eta(x) \in C_0^{\infty}(\mathbb{R})$.

Another singular solution of (1.1) is very singular solution. Due to the effect of the convection of (1.1), we introduce the following definition.

Definition 2. A function u(x,t) defined in $S_T = \mathbb{R} \times (0,T)$ (T > 0) is called a very singular solution of (1.1), if and only if u(x,t) satisfies

- (i) u(x,t) is nonnegative, continuous in $\overline{S_T} \setminus \{(0,0)\}$ and bounded in $\overline{S_T^{\tau}} = \mathbb{R} \times [\tau, T]$ for any $\tau: 0 < \tau < T$;
- (ii) u(x,t) satisfies (1.1) for $(x,t) \in S_T^+ \cup S_T^-$ in the sense of distribution, where $S_T^+ = S_T \cap \{x > 0\}$ and $S_T^- = S_T \cap \{x < 0\}$;

Please cite this article in press as: G. Lu, Very singular solution and short time asymptotic behaviors of nonnegative singular solutions for heat equation with nonlinear convection, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.07.030

2

Download English Version:

https://daneshyari.com/en/article/5773878

Download Persian Version:

https://daneshyari.com/article/5773878

<u>Daneshyari.com</u>