Very singular solution and short time asymptotic behaviors of nonnegative singular solutions for heat equation with nonlinear convection **

Guofu Lu
Institute of Applied Mathematics, Putian University, Putian 351100, Fujian, China

Received 16 November 2016; revised 30 May 2017

Abstract

In this paper we study the following Cauchy problem: $$
\begin{aligned} & u_{t}=u_{x x}+\left(u^{n}\right)_{x}, \quad(x, t) \in \mathbb{R} \times(0, \infty), \\ & u(x, 0)=0, \quad x \neq 0, \end{aligned}
$$ where parameter $n \geq 0$. Its nonnegative solution is called singular solution when $u(x, t)$ satisfies the equation in the sense of distribution, initial conditions in the classical sense and also $u(x, t)$ exhibits a singularity at the origin $(0,0)$. As we know, the singular solution is called source-type solution if the initial is $M \delta(x)$, where $\delta(x)$ is Dirac measure and constant $M>0$. The solution is called very singular solution if it possesses more singularity than that of source-type solution at the origin. Here we focus on what happens in the interactive effect between the diffusion and convection in a whole physical process. We find critical values $n_{2}<n_{1}<n_{0}$ such that there exists unique source-type solution in the exponent range of $0<n<n_{0}$, while there exists no nonnegative singular solution if $n \geq n_{0}$. Only in the case of $n_{2}<n<n_{1}$ there exists a very singular solution, but in the case of $n \geq n_{1}$ or $n \leq n_{2}$ there is no solution that exhibits more singular than source-type solution at the origin. Furthermore we describe the short time asymptotic behavior of the singular solutions when such Cauchy problem is solvability for source-type solution or very singular solution.

© 2017 Elsevier Inc. All rights reserved.

[^0]Keywords: Nonlinear convection; Source-type solution; Very singular solution; Critical exponent; Asymptotic behaviors; Entropy inequality

1. Introduction

In this paper we consider the singular nonnegative solutions of the heat equation with nonlinear convection

$$
\begin{equation*}
u_{t}=u_{x x}+\left(u^{n}\right)_{x}, \quad \text { in } S_{T}=\mathbb{R} \times(0, T), \tag{1.1}
\end{equation*}
$$

where $n \geq 0$, with initial conditions

$$
\begin{equation*}
u(x, 0)=0 \text { for } x \neq 0 \tag{1.2}
\end{equation*}
$$

and $u(x, t)$ may exhibit a singularity at origin $(0,0)$. This means a function $u(x, t)$ which is defined, nonnegative and continuous in $\overline{S_{T}} \backslash\{(0,0)\}$, satisfies (1.1) in the sense of distribution and initial condition (1.2) in the classical sense, and is uniformly bounded in x for every $t \in(0, T)$.

A typical singular solution of (1.1) is source-type solution.

Definition 1. For some constant $M>0$, a function $u_{M}(x, t)$ defined in $S_{T}=\mathbb{R} \times(0, T)(T>0)$ is called a source-type solution of (1.1), if and only if:
(i) $u_{M}(x, t)$ is nonnegative, continuous in $\overline{S_{T}} \backslash\{(0,0)\}$ and bounded in $\overline{S_{T}^{\tau}}=\mathbb{R} \times[\tau, T]$ for any τ : $0<\tau<T$;
(ii) $u_{M}(x, t)$ satisfies (1.1) in the sense of distribution and (1.2) in classical sense;
(iii) $u_{M}(x, 0)=M \delta(x)$ in the sense of distribution, i.e.,

$$
\begin{equation*}
\lim _{\tau \rightarrow+0} \int_{-\infty}^{\infty} u_{M}(x, \tau) \eta(x) d x=M \eta(0) \tag{1.3}
\end{equation*}
$$

for any $\eta(x) \in C_{0}^{\infty}(\mathbb{R})$.
Another singular solution of (1.1) is very singular solution. Due to the effect of the convection of (1.1), we introduce the following definition.

Definition 2. A function $u(x, t)$ defined in $S_{T}=\mathbb{R} \times(0, T)(T>0)$ is called a very singular solution of (1.1), if and only if $u(x, t)$ satisfies
(i) $u(x, t)$ is nonnegative, continuous in $\overline{S_{T}} \backslash\{(0,0)\}$ and bounded in $\overline{S_{T}^{\tau}}=\mathbb{R} \times[\tau, T]$ for any $\tau: 0<\tau<T$;
(ii) $u(x, t)$ satisfies (1.1) for $(x, t) \in S_{T}^{+} \cup S_{T}^{-}$in the sense of distribution, where $S_{T}^{+}=S_{T} \cap$ $\{x>0\}$ and $S_{T}^{-}=S_{T} \cap\{x<0\} ;$

https://daneshyari.com/en/article/5773878

Download Persian Version:
https://daneshyari.com/article/5773878

Daneshyari.com

[^0]: the research of this author was supported by NNFS of China under Grant No. 11471175, No. 10671103 and No. 11001142.

 E-mail address: gflu@sina.com.
 http://dx.doi.org/10.1016/j.jde.2017.07.030
 0022-0396/© 2017 Elsevier Inc. All rights reserved.

