

Available online at www.sciencedirect.com

### **ScienceDirect**

Journal of Differential Equations

J. Differential Equations ••• (••••) •••-••

www.elsevier.com/locate/jde

# Radial singular solutions for a fourth order equation with negative exponents \*

#### Baishun Lai

School of Mathematics and Statistics, Henan University, Kaifeng 475004, PR China Received 21 June 2017

#### **Abstract**

In this paper, we consider the radial singular solution of

$$\Delta^2 u = -\frac{1}{u^p}$$
, in  $\mathbb{R}^N$  with  $u > 0$ ,  $p > 0$ .

By using some elementary ordinary differential equation arguments, we prove the above equation admits no radial singular solution for N=3,  $p \ge 3$ . In addition, the exact asymptotic behaviors of the radial singular solution as  $r \to 0$  is established for p=1,  $N \ge 4$ , which have a significant difference with the explicit singular solution. As a product, the singularity of any radial singular solution is of *type II* if p=1,  $N \ge 4$ . © 2017 Elsevier Inc. All rights reserved.

Keywords: Biharmonic equation; Singularity; Asymptotic behavior

#### 1. Introduction

In this paper, we consider the following fourth order elliptic problems with negative exponents

$$\Delta^2 u = -\frac{1}{u^p}, \quad \text{in } \mathbb{R}^N \quad \text{with } u > 0, \, p > 0.$$
 (1.1)

http://dx.doi.org/10.1016/j.jde.2017.08.060

0022-0396/© 2017 Elsevier Inc. All rights reserved.

<sup>&</sup>lt;sup>†</sup> This research is supported by National Natural Science Foundation of China (Grants 11471099). *E-mail address:* laibaishun@henu.edu.cn.

2

The motivation to study this equation arises from the conformal geometry. It is well known that if g and  $\bar{g}$  are two metrics on a 2-dimension Riemann surface and  $\bar{g} = e^{2u}g$ , then their associated Laplace operators satisfy

$$\Delta_{\bar{g}} = e^{-2u} \Delta_g,$$

where  $\Delta_g = -\mathrm{div}_g \nabla$  is the Laplace operator with respect to g. Such an operator is known as conformally covariant operator. However, the Laplace operator  $\Delta_g$  is neither conformally invariant nor conformally covariant for dimension  $N \geq 3$ , thus one usually defines the conformal Laplace in dimension  $N \geq 3$  as

$$L = -\Delta_g + \frac{N-2}{4(N-1)}S_g,$$

which is a generalization of Laplace operator on a 2-dimension Riemann surface. Here  $S_g$  is the scalar curvature of the metric g.

Similarly Paneitz in [1] extended the  $\Delta_g$  in dimension 2 to the fourth order operator on a 4-dimensional Riemannian manifold (M, g), which is defined as

$$P_g^4 = \Delta_g^2 - \operatorname{div}_g \left(\frac{2}{3} S_g g - 2Ric_g\right) d, \tag{1.2}$$

where  $Ric_g$  is the Ricci curvature of g. Also the  $P_g^4$  has the conformally covariant property, more specifically, if  $\tilde{g} = e^{2u}g$  for all  $u \in C^{\infty}(M)$ , then

$$P_{\tilde{\varrho}}^4 = e^{-4u} P_{\varrho}^4.$$

An extension to manifolds of other dimension, due to Branson [2], is the fourth order operator defined by

$$P_g^N = \Delta_g^2 - \text{div}_g \left( \frac{(N-2)^2 + 4}{2(N-1)(N-2)} S_g g - \frac{4}{N-2} Ric_g \right) d + \frac{N-4}{2} Q_g^N, \tag{1.3}$$

where

$$Q_g^N = \frac{1}{2(N-1)} \Delta_g S_g + \frac{N^3 - 4N^2 + 16N - 16}{8(N-1)^2(N-2)^2} S_g^2 - \frac{2}{(N-2)^2} |Ric_g|^2.$$

We may note that when N = 4, Eq. (1.3) reduce to Eq. (1.2).

Similar to the conformal Laplace,  $P_g^{\tilde{N}}$  has conformal properties: for all  $u \in C^{\infty}(M)$ ,  $P_g^N(u\varphi) = \varphi^{\frac{N+4}{N-4}} P_{\tilde{g}}^N(u)$  when  $\tilde{g} = \varphi^{\frac{4}{N-4}} g$ . In particular, if  $\varphi = 1$ , then u satisfies the fourth-order Yamabe's equation

$$P_g^N u = \frac{N-4}{2} Q_{\tilde{g}} u^{\frac{N+4}{N-4}} \tag{1.4}$$

## Download English Version:

# https://daneshyari.com/en/article/5773893

Download Persian Version:

https://daneshyari.com/article/5773893

<u>Daneshyari.com</u>