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Abstract

In this paper, we consider the radial singular solution of

1
AZu:——p, in RN with u>0,p=>0.
u

By using some elementary ordinary differential equation arguments, we prove the above equation admits no
radial singular solution for N = 3, p > 3. In addition, the exact asymptotic behaviors of the radial singular
solution as » — 0 is established for p = 1, N > 4, which have a significant difference with the explicit
singular solution. As a product, the singularity of any radial singular solution is of type Il if p =1, N > 4.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider the following fourth order elliptic problems with negative expo-
nents

Azuz——p, in RV with u>0,p>0. (1.1)
u
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The motivation to study this equation arises from the conformal geometry. It is well known that
if g and g are two metrics on a 2-dimension Riemann surface and g = ¢ g, then their associated
Laplace operators satisfy

__ —2u
Ag=e Ag,

where A, = —div, V is the Laplace operator with respect to g. Such an operator is known as con-
formally covariant operator. However, the Laplace operator A, is neither conformally invariant
nor conformally covariant for dimension N > 3, thus one usually defines the conformal Laplace
in dimension N > 3 as

N-=-2

L=—Ag+——S5,,
AN D¢

which is a generalization of Laplace operator on a 2-dimension Riemann surface. Here S; is the
scalar curvature of the metric g.

Similarly Paneitz in [1] extended the A, in dimension 2 to the fourth order operator on a
4-dimensional Riemannian manifold (M, g), which is defined as

4 2 o (2 .
Pi=A2 —dlvg<§Sgg—2Rng>d, (1.2)

where Ric, is the Ricci curvature of g. Also the P; has the conformally covariant property, more
specifically, if § = e*g for all u € C°°(M), then

4 —4ups
Pg—e Pg.

An extension to manifolds of other dimension, due to Branson [2], is the fourth order operator
defined by

N_ a2 gy (N =27 +4 _ : N-4 o~
Py = A2 dlvg<2(N_1)(N_2) .3 N_Zchg)dJr o (1.3)
where
1 N3 —4N? + 16N — 16 2
N 2 -2
=——A,S - Ric,|?.
Q¢ N —nes T 8(N —1)2(N —2)2 % (N—2)2| ol

We may note that when N =4, Eq. (1.3) reduce to Eq. (1.2).
Similar to the conformal Laplace, Péfv has conformal properties: for all u € C*°(M), Péfv (uep)

N+4 4
= (pl\’%4 PgN (#) when g = ¢ N-4 g. In particular, if ¢ = 1, then u satisfies the fourth-order Yam-
abe’s equation

N N —4 N+4
Pg u= TquN*“ (1.4
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