

Available online at www.sciencedirect.com

Journal of Differential Equations

YJDEQ:8987

J. Differential Equations ••• (••••) •••-•••

www.elsevier.com/locate/jde

On the initial-boundary value problem for some quasilinear parabolic equations of divergence form

Mitsuhiro Nakao

Faculty of Mathematics, Kyushu University, Moto-oka 744, Fukuoka 819-0395, Japan Received 6 July 2017

Abstract

In this paper we give an existence theorem of global classical solution to the initial boundary value problem for the quasilinear parabolic equations of divergence form $u_t - \text{div}\{\sigma(|\nabla u|^2)\nabla u\} = f(\nabla u, u, x, t)$ where $\sigma(|\nabla u|^2)$ may not be bounded as $|\nabla u| \to \infty$. As an application the logarithmic type nonlinearity $\sigma(|\nabla u|^2) = \log(1 + |\nabla u|^2)$ which is growing as $|\nabla u| \to \infty$ and degenerate at $|\nabla u| = 0$ is considered under $f \equiv 0$. © 2017 Published by Elsevier Inc.

MSC: 35B35; 35B45; 35K20; 35K59; 35K65; 35K92

Keywords: Quasilinear parabolic equation; Growing nonlinearity; Moser's method

1. Introduction

In this paper we consider the initial-boundary value problem of the quasilinear parabolic equation of the form:

$$u_t - \operatorname{div}\{\sigma(|\nabla u|^2) \nabla u\} = f(\nabla u, u, x, t) \text{ in } \Omega \times (0, \infty), \tag{1.1}$$

with the initial-boundary conditions

http://dx.doi.org/10.1016/j.jde.2017.08.056 0022-0396/© 2017 Published by Elsevier Inc.

Please cite this article in press as: M. Nakao, On the initial-boundary value problem for some quasilinear parabolic equations of divergence form, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.08.056

E-mail address: mnakao@math.kyushu-u.ac.jp.

ARTICLE IN PRESS

M. Nakao / J. Differential Equations ••• (••••) •••-•••

$$u(x, 0) = u_0(x) \text{ and } u(x, t)|_{\partial\Omega} = 0,$$
 (1.2)

where Ω is a bounded domain in \mathbb{R}^N with $C^{2,\alpha}$, $\alpha > 0$, class boundary $\partial \Omega$. We assume that $\sigma = \sigma(v^2)$ is a $C^{1,\alpha}$ class positive function satisfying the following conditions:

Hyp. A.

(1)
$$\sigma(v^2) + 2\sigma'(v^2)v^2 \ge k_0\sigma(v^2),$$
 (2) $\sigma(v^2) \ge \epsilon_0 > 0,$
(3) $|\sigma'(v^2)v^2| \le k_1\sigma(v^2)$ and (4) $k_0\sigma(v^2)v^2 \le \int_0^{v^2} \sigma(\eta)d\eta$

with some $\epsilon_0, k_0, k_1 > 0$.

We do not assume the boundedness of $\sigma(v^2)$ as v^2 to ∞ and we can give $\sigma = (v^2 + \epsilon)^{m/2}$, $m \ge 0$, and $\log(1 + \epsilon + v^2)$, $\epsilon > 0$, as typical examples.

For the force term we assume:

Hyp. B. $f(\nabla u, u, x, t)$ is a $C^{\alpha}(\mathbb{R}^{n+1} \times \overline{\Omega} \times [0, \infty))$ class function with

$$\sup_{\bar{\Omega}\times[0,T]} |f(\nabla u, u, x, t)| \le M_T (1+|\nabla u|) < \infty$$

for any $0 < T < \infty$, where M_T is a constant possibly depending on T. Further, $f(\nabla u, u, x, t)$ is Lipshitz continuous in $(\nabla u, u)$ uniformly on $B^{n+1} \times \Omega \times [0, T]$) for any bounded set $B^{n+1} \subset R^{n+1}$.

Concerning the initial data we assume $u_0 \in C_0^{2,\alpha}(\Omega), \alpha > 0$.

In the famous and standard text book [6] by Ladyzenskaya, Solonnikov and Uraltseva it is proved that (in addition to the conditions (1)–(4)) if σ is bounded from above, that is, $\sigma(v^2) \leq k_1 < \infty$, the problem admits a unique classical solution $u(t) \in C^{1,\alpha/2}([0,\infty); C(\bar{\Omega})) \cap C([0,\infty); C^{2,\alpha}(\bar{\Omega}))$ (see Theorem 4.2 in Chap. V). In fact more general equations are considered there, but the conditions on σ in the above seem to be essential. Further, in [6] it is proved that if σ has a polynomial growth order, that is, $k_0(1 + |v|)^m \leq \sigma(v^2) \leq k_1(1 + |v|)^m, m \geq 0$, then the problem admits a unique classical solution (see Theorem 4.1 in Chap. VI). In the present note we start from Theorem 4.2, chap. V, in [6] and prove the existence of classical solution of the problem (1.1)–(1.2). The key step is the derivation of the boundedness of $\|\nabla u(t)\|_{\infty}, 0 \leq t \leq T$ for the approximate solutions u(t). For this we employ Moser's technique as in [1] and [10]. In the proof of Theorem 4.1, Chap. VI, in [6] very skilful method based on maximum principle is used to derive the a priori estimate for $\|\nabla u(t)\|_{\infty}$ and our method is different from it. We do not make any specified assumption on the growth order and our result includes, for an example, $\sigma = \log(1 + \epsilon + |\nabla u|^2), \epsilon > 0$, which does not seem to be included in [6].

As an application we consider in the second part the degenerate case $\sigma(v^2) = \log(1 + v^2)$ with f = 0. That is,

$$u_t - \operatorname{div}\{\log(1 + |\nabla u|^2) \nabla u\} = 0 \text{ in } \Omega \times (0, \infty), \tag{1.3}$$

Please cite this article in press as: M. Nakao, On the initial-boundary value problem for some quasilinear parabolic equations of divergence form, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.08.056

Download English Version:

https://daneshyari.com/en/article/5773897

Download Persian Version:

https://daneshyari.com/article/5773897

Daneshyari.com