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Abstract

We firstly prove Strichartz estimates for the fractional Schrödinger equations on Rd , d ≥ 1 endowed with 
a smooth bounded metric g. We then prove Strichartz estimates for the fractional Schrödinger and wave 
equations on compact Riemannian manifolds without boundary (M, g). This result extends the well-known 
Strichartz estimate for the Schrödinger equation given in [1]. We finally give applications of Strichartz 
estimates for the local well-posedness of the pure power-type nonlinear fractional Schrödinger and wave 
equations posed on (M, g).
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1. Introduction and main results

This paper is concerned with the Strichartz estimates for the generalized fractional Schrödin-
ger equation on Riemannian manifold (M, g), namely{

i∂tu + �σ
g u = 0,

u(0) = u0,
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where σ ∈ (0, ∞)\{1} and �g =√−�g with �g is the Laplace–Beltrami operator associated to 
the metric g. When σ ∈ (0, 2)\{1}, it corresponds to the fractional Schrödinger equation discov-
ered by N. Laskin (see [2,3]). When σ ≥ 2, it can be seen as a generalization of the Schrödinger 
equation σ = 2 (see e.g. [4,5]) or the fourth-order Schrödinger equation σ = 4 (see e.g. [6,7]).

The Strichartz estimates play an important role in the study of nonlinear fractional Schrödinger 
equation on Rd (see e.g. [4–6,8–12] and references therein). Let us recall the local in time 
Strichartz estimates for the fractional Schrödinger operator on Rd . For σ ∈ (0, ∞)\{1} and 
I ⊂R a bounded interval, one has

‖eit�σ

u0‖Lp(I,Lq(Rd )) ≤ C‖u0‖Hγpq (Rd ), (1.1)

where � = √−� with � is the free Laplace operator on Rd and

γpq = d

2
− d

q
− σ

p

provided that (p, q) satisfies the fractional admissible condition, namely

p ∈ [2,∞], q ∈ [2,∞), (p, q, d) 	= (2,∞,2),
2

p
+ d

q
≤ d

2
.

We refer to [12] (see also [10]) for a general version of these Strichartz estimates on Rd .
The main purpose of this paper is to prove Strichartz estimates for the fractional Schrödinger 

equation on Rd equipped with a smooth bounded metric and on a compact manifold without 
boundary (M, g).

Let us firstly consider Rd endowed with a smooth Riemannian metric g. Let g(x) =
(gjk(x))dj,k=1 be a metric on Rd , and denote G(x) = (gjk(x))dj,k=1 := g−1(x). The Laplace–
Beltrami operator associated to g reads

�g =
d∑

j,k=1

|g(x)|−1∂j

(
gjk(x)|g(x)|∂k

)
,

where |g(x)| := √
detg(x) and denote P := −�g the self-adjoint realization of −�g . Recall that 

the principal symbol of P is

p(x, ξ) = ξ tG(x)ξ =
d∑

j,k=1

gjk(x)ξj ξk.

In this paper, we assume that g satisfies the following assumptions.

1. There exists C > 0 such that for all x, ξ ∈ R
d ,

C−1|ξ |2 ≤
d∑

j,k=1

gjk(x)ξj ξk ≤ C|ξ |2. (1.2)
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