

Available online at www.sciencedirect.com

Journal of Differential Equations

YJDEQ:8998

J. Differential Equations ••• (••••) •••-•••

www.elsevier.com/locate/jde

On the existence of connecting orbits for critical values of the energy

Giorgio Fusco^a, Giovanni F. Gronchi^{b,*}, Matteo Novaga^b

^a Dipartimento di Matematica, Università dell'Aquila, Via Vetoio, Coppito, L'Aquila, 67100, Italy
 ^b Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, Pisa, 56127, Italy

Received 26 February 2017; revised 24 August 2017

Abstract

We consider an open connected set Ω and a smooth potential U which is positive in Ω and vanishes on $\partial \Omega$. We study the existence of orbits of the mechanical system $\ddot{u} = U_x(u)$, that connect different components of $\partial \Omega$ and lie on the zero level of the energy. We allow that $\partial \Omega$ contains a finite number of critical points of U. The case of symmetric potential is also considered. © 2017 Elsevier Inc. All rights reserved.

MSC: 37J50; 37J45

Keywords: Action-minimizing solutions; Periodic, homoclinic and heteroclinic orbits; Variational methods

1. Introduction

Let $U : \mathbb{R}^n \to \mathbb{R}$ be a function of class C^2 . We assume that $\Omega \subset \mathbb{R}^n$ is a connected component of the set $\{x \in \mathbb{R}^n : U(x) > 0\}$ and that $\partial \Omega$ is compact and is the union of $N \ge 1$ distinct nonempty connected components $\Gamma_1, \ldots, \Gamma_N$. We consider the following situations:

Corresponding author.

E-mail addresses: fusco@univaq.it (G. Fusco), giovanni.federico.gronchi@unipi.it (G.F. Gronchi), matteo.novaga@unipi.it (M. Novaga).

http://dx.doi.org/10.1016/j.jde.2017.08.067

^{0022-0396/© 2017} Elsevier Inc. All rights reserved.

ARTICLE IN PRESS

2

G. Fusco et al. / J. Differential Equations ••• (••••) •••-•••

H $N \ge 2$ and, if Ω is unbounded, there is $r_0 > 0$ and a non-negative function $\sigma : [r_0, +\infty) \to \mathbb{R}$ such that $\int_{r_0}^{+\infty} \sigma(r) dr = +\infty$ and

$$\sqrt{U(x)} \ge \sigma(|x|), \ x \in \Omega, \ |x| \ge r_0.$$
(1)

 $\mathbf{H}_s \ \Omega$ is bounded, the origin $0 \in \mathbb{R}^n$ belongs to Ω and U is invariant under the antipodal map

$$U(-x) = U(x), \ x \in \Omega.$$

Condition (1) was first introduced in [1]. A sufficient condition for (1) is that $\liminf_{|x|\to\infty} U(x) > 0$.

We study non constant solutions $u: (T_-, T_+) \rightarrow \Omega$, of the equation

$$\ddot{u} = U_x(u), \quad U_x = \left(\frac{\partial U}{\partial x}\right)^T,$$
(2)

that satisfy

$$\lim_{t \to T_{\pm}} d(u(t), \partial \Omega) = 0, \tag{3}$$

with d the Euclidean distance, and lie on the energy surface

$$\frac{1}{2}|\dot{u}|^2 - U(u) = 0.$$
(4)

We allow that the boundary $\partial \Omega$ of Ω contains a finite set P of critical points of U and assume

H₁ If $\Gamma \in \{\Gamma_1, ..., \Gamma_N\}$ has positive diameter and $p \in P \cap \Gamma$, then p is a hyperbolic critical point of U.

If Γ has positive diameter, then hyperbolic critical points $p \in \Gamma$ correspond to saddle-center equilibrium points in the zero energy level of the Hamiltonian system associated to (2). These points are organizing centers of complex dynamics, see [2].

Note that \mathbf{H}_1 does not exclude that some of the Γ_j reduce to a singleton, say $\{p\}$, for some $p \in P$. In this case nothing is required on the behavior of U in a neighborhood of p aside from being of class C^2 .

A comment on **H** and **H**_s is in order. If *P* is nonempty $u \equiv p$ for $p \in P$ is a constant solution of (2) that satisfies (3) and (4). To avoid trivial solutions of this kind we require $N \ge 2$ in **H**, and look for solutions that connect different components of $\partial \Omega$. In **H**_s we do not exclude that $\partial \Omega$ is connected (N = 1) and we avoid trivial solutions by restricting to a symmetric context and to solutions that pass through 0.

We prove the following results.

Theorem 1.1. Assume that **H** and **H**₁ hold. Then for each $\Gamma_{-} \in {\Gamma_1, ..., \Gamma_N}$ there exist $\Gamma_{+} \in {\Gamma_1, ..., \Gamma_N} \setminus {\Gamma_{-}}$ and a map $u^* : (T_{-}, T_{+}) \to \Omega$, with $-\infty \le T_{-} < T_{+} \le +\infty$, that satisfies (2), (4) and

Please cite this article in press as: G. Fusco et al., On the existence of connecting orbits for critical values of the energy, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.08.067

Download English Version:

https://daneshyari.com/en/article/5773907

Download Persian Version:

https://daneshyari.com/article/5773907

Daneshyari.com