

Available online at www.sciencedirect.com

Journal of Differential Equations

YJDEQ:8898

J. Differential Equations ••• (••••) •••-•••

www.elsevier.com/locate/jde

Large conformal metrics with prescribed scalar curvature *

Angela Pistoia^{a,*}, Carlos Román^b

^a Dipartimento SBAI, Università di Roma "La Sapienza", via Antonio Scarpa 16, 00161 Roma, Italy ^b Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, 4, place Jussieu, 75005, Paris, France

Received 12 March 2017; revised 29 June 2017

Abstract

Let (M, g) be an *n*-dimensional compact Riemannian manifold. Let *h* be a smooth function on *M* and assume that it has a critical point $\xi \in M$ such that $h(\xi) = 0$ and which satisfies a suitable flatness assumption. We are interested in finding conformal metrics $g_{\lambda} = u_{\lambda}^{\frac{4}{n-2}}g$, with u > 0, whose scalar curvature is the prescribed function $h_{\lambda} := \lambda^2 + h$, where λ is a small parameter.

In the positive case, i.e. when the scalar curvature R_g is strictly positive, we find a family of "bubbling" metrics g_{λ} , where u_{λ} blows up at the point ξ and approaches zero far from ξ as λ goes to zero.

In the general case, if in addition we assume that there exists a non-degenerate conformal metric $g_0 = u_0^{\frac{4}{n-2}}g$, with $u_0 > 0$, whose scalar curvature is equal to h, then there exists a bounded family of conformal metrics $g_{0,\lambda} = u_{0,\lambda}^{\frac{4}{n-2}}g$, with $u_{0,\lambda} > 0$, which satisfies $u_{0,\lambda} \to u_0$ uniformly as $\lambda \to 0$. Here, we build a second family of "bubbling" metrics g_{λ} , where u_{λ} blows up at the point ξ and approaches u_0 far from ξ as λ goes to zero. In particular, this shows that this problem admits more than one solution. © 2017 Elsevier Inc. All rights reserved.

MSC: 35J60; 53C21

Please cite this article in press as: A. Pistoia, C. Román, Large conformal metrics with prescribed scalar curvature, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.07.005

^{*} The first author has been supported by Fondi di Ateneo "Sapienza" Università di Roma. The second author has been supported by a public grant overseen by the French National Research Agency (ANR) as part of the "Investissements d'Avenir" program (reference: ANR-10-LABX-0098, LabEx SMP).

Corresponding author.

E-mail addresses: angela.pistoia@uniroma1.it (A. Pistoia), roman@ann.jussieu.fr (C. Román).

http://dx.doi.org/10.1016/j.jde.2017.07.005

^{0022-0396/© 2017} Elsevier Inc. All rights reserved.

ARTICLE IN PRESS

A. Pistoia, C. Román / J. Differential Equations ••• (••••) •••-••

Keywords: Prescribed scalar curvature; Blow-up phenomena

1. Introduction

Let (M, g) be a smooth compact manifold without boundary of dimension $n \ge 3$. The prescribed scalar curvature problem (with conformal change of metric) is

given a function h on M does there exist a metric \tilde{g} conformal to g such that the scalar curvature of \tilde{g} equals h?

Given a metric \tilde{g} conformal to g, i.e. $\tilde{g} = u^{\frac{4}{n-2}}g$ for some smooth conformal factor u > 0, this problem is equivalent to finding a solution to

$$-\Delta_g u + c(n)R_g u = c(n)hu^p, \quad u > 0 \quad \text{on } M,$$

where $\Delta_g = \text{div}_g \nabla_g$ is the Laplace–Beltrami operator, $c(n) = \frac{n-2}{4(n-1)}$, $p = \frac{n+2}{n-2}$, and R_g denotes the scalar curvature associated to the metric g. Since it does not change the problem, we replace c(n)h with h. We are then led to study the problem

$$-\Delta_g u + c(n)R_g u = hu^p, \quad u > 0 \quad \text{on } M.$$
(1.1)

We suppose that *h* is not constant, otherwise we would be in the special case of the Yamabe problem which has been completely solved in the works by Yamabe [34], Trudinger [32], Aubin [3], and Schoen [29]. For this reason we can assume in (1.1) that R_g is a constant.

In the book [5, Chapter 6], Aubin gives an exhaustive description of known results. Next, we briefly recall some of them.

• The negative case, i.e. $R_g < 0$.

A necessary condition for existence is that $\int_{M} h dv_g < 0$ (a more general result can be found

in [20]).

When h < 0, (1.1) has a unique solution (see for instance [20,3]). The situation turns out to be more complicated when h vanishes somewhere on M or if it changes sign. When $\max_M h = 0$, Kazdan and Warner [20], Ouyang [25], Vázquez and Véron [33], and del Pino [10] proved the existence of a unique solution, provided that a lower bound on R_g , depending on the zero set of h, is satisfied. The general case was studied by Rauzy in [26], who extended the previous results to the case when h changes sign. Letting $h^- := \min\{h, 0\}$ and $h^+ := \max\{h, 0\}$, the theorem proved in [26] reads as follows.

Theorem 1.1. Let
$$\mathcal{A} := \left\{ u \in H_g^1(M) \mid u \ge 0, \ u \ne 0, \ \int_M h^- u dv_g = 0 \right\}$$
 and

$$\Lambda_0 := \inf_{u \in \mathcal{A}} \frac{\int_M |\nabla u|^2 dv_g}{\int_M u^2 dv_g},$$

Please cite this article in press as: A. Pistoia, C. Román, Large conformal metrics with prescribed scalar curvature, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.07.005

Download English Version:

https://daneshyari.com/en/article/5773943

Download Persian Version:

https://daneshyari.com/article/5773943

Daneshyari.com