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Abstract

We consider the following exponential reaction–diffusion equation involving a nonlinear gradient term:

∂tU = �U + α|∇U |2 + eU , (x, t) ∈R
N × [0, T ), α > −1.

We construct for this equation a solution which blows up in finite time T > 0 and satisfies some prescribed 
asymptotic behavior. We also show that the constructed solution and its gradient blow up in finite time T
simultaneously at the origin, and find precisely a description of its final blowup profile. It happens that 
the quadratic gradient term is critical in some sense, resulting in the change of the final blowup profile in 
comparison with the case α = 0. The proof of the construction is inspired by the method of Merle and Zaag 
in 1997. It relies on the reduction of the problem to a finite dimensional one, and uses the index theory to 
conclude. One of the major difficulties arising in the proof is that outside the blowup region, the spectrum of 
the linearized operator around the profile can never be made negative. Truly new ideas are needed to achieve 
the control of the outer part of the solution. Thanks to a geometrical interpretation of the parameters of the 
finite dimensional problem in terms of the blowup time and the blowup point, we obtain the stability of the 
constructed solution with respect to perturbations in the initial data.
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1. Introduction

We are interested in the following nonlinear heat equation:

{
∂tU = �U + α|∇U |r + eU ,

U(0) = U0,
(1.1)

where U(t) : x ∈ R
N → U(x, t) ∈ R, � and ∇ stand for the Laplacian and the gradient in RN

with N ≥ 1,

r = 2 and α > −1.

Equation (1.1) can be viewed as the limiting case as p → +∞, for the following critical equation 
which was introduced by Chipot and Weissler [7]:

∂tU = �U + α|∇U |r + |U |p−1U, with p > 1 and r = 2p

p + 1
. (1.2)

The Cauchy problem for (1.1) can be solved in several functional spaces F , for example 
F = W 1,∞(RN) or in a special affine space F =Ha for some positive constant a with

Ha = {u ∈ ψ + W 1,∞(RN) with ψ(x) = − ln(1 + a|x|2)}. (1.3)

In particular, the problem (1.1) has a unique classical solution U(t) ∈ F defined on [0, T ) with 
T ≤ +∞ (see Remark 1.3 for more details). In the case T = +∞, U(t) is a global solution for 
(1.1); on the contrary, i.e. T < +∞, we say that the solution U(t) blows up in finite time T , in 
the sense that

lim
t→T

‖U(t)‖W 1,∞(RN) = +∞,

or lim
t→T

‖U(t) − ψ‖W 1,∞(RN) = +∞ in the second case.

As for equation (1.1), the value r = 2 is a critical exponent for different reasons (r < 2 and 
r > 2 correspond to the subcritical and supercritical cases). One reason is that, when r = 2, 
equation (1.1) is invariant under the following transformation:

∀λ > 0, Uλ(x, t) = 2 lnλ + U(λx,λ2t), (1.4)

as for the equation without the gradient term, i.e. α = 0. Let us recall that equation (1.2) is 
invariant under the transformation

∀λ > 0, Uλ(x, t) = λ
2

p−1 U(λx,λ2t). (1.5)
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