Impulse output rapid stabilization for heat equations

Kim Dang Phung ${ }^{\mathrm{a}, *}$, Gengsheng Wang ${ }^{\mathrm{b}, 1}$, Yashan $\mathrm{Xu}^{\mathrm{c}, 2}$
${ }^{\text {a }}$ Université d'Orléans, Laboratoire MAPMO, CNRS UMR 7349, Fédération Denis Poisson, FR CNRS 2964, Bâtiment de Mathématiques, B.P. 6759, 45067 Orléans Cedex 2, France
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, and Collaborative Innovation Centre of Mathematics, Wuhan University, Wuhan, 430072, China
${ }^{\text {c }}$ School of Mathematical Sciences, Fudan University, KLMNS, Shanghai 200433, China

Received 6 May 2016; revised 24 May 2017

Abstract

The main aim of this paper is to provide a new feedback law for the heat equations in a bounded domain Ω with Dirichlet boundary condition. Two constraints will be compulsory: First, the controls are active in a subdomain of Ω and at discrete time points; Second, the observations are made in another subdomain and at different discrete time points. Our strategy consists in linking an observation estimate at one time, minimal norm impulse control, approximate inverse source problem and rapid output stabilization.

 © 2017 Elsevier Inc. All rights reserved.MSC: 35K05; 35B40; 49J20; 93D15
Keywords: Rapid output stabilization; Impulse control; Heat equation

[^0]
1. Introduction

Let $\Omega \subset \mathbb{R}^{d}, d \geq 1$, be a bounded domain, with a C^{2} boundary $\partial \Omega$. Let V be a function in $L^{\infty}(\Omega)$ with its norm $\|\cdot\|_{\infty}$. Define

$$
A:=\Delta-V, \text { with } D(A)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)
$$

Write $\left\{e^{t A}, t \geq 0\right\}$ for the semigroup generated by A on $L^{2}(\Omega)$. It is well-known that when $V=0$, the semigroup $\left\{e^{t A}, t \geq 0\right\}$ has the exponential decay with the rate α_{1}, which is the first eigenvalue of $-\Delta$ with the homogeneous Dirichlet boundary condition. The aim of this study is to build up, for each $\gamma>0$, an output feedback law \mathcal{F}_{γ} so that any solution to the closed-loop controlled heat equation, associated with A and \mathcal{F}_{γ}, has an exponential decay with the rate γ. Further, two constraints are imposed: We only have accesses to the system at time $\frac{1}{2} T+\overline{\mathbb{N}} T$ on an open subdomain $\omega_{1} \subset \Omega$; We only can control at time $T+\overline{\mathbb{N}} T$ on another open subset $\omega_{2} \subset \Omega$. Here, T is an arbitrarily fixed positive number and $\overline{\mathbb{N}}:=\mathbb{N} \cup\{0\}$, with \mathbb{N} the set of all positive natural numbers. Therefore, the closed-loop controlled equation under consideration reads:

$$
\begin{cases}y^{\prime}(t)-A y(t)=0, & t \in(0, \infty) \backslash \mathbb{N} T \tag{1.1}\\ y(0) \in L^{2}(\Omega), & \\ y(n T)=y\left(n T_{-}\right)+1_{\omega_{2}} \mathcal{F}_{\gamma}\left(1_{\omega_{1}}^{*} y\left(\left(n-\frac{1}{2}\right) T\right)\right), & \forall n \in \mathbb{N}\end{cases}
$$

Here, $y\left(n T_{-}\right)$denotes the left limit of the function: $t \mapsto y(t)$ (from $[0, \infty)$ to $\left.L^{2}(\Omega)\right)$ at time $n T ; 1_{\omega_{2}}$ denotes the zero-extension operator from $L^{2}\left(\omega_{2}\right)$ to $L^{2}(\Omega)$ (i.e., for each $f \in L^{2}\left(\omega_{2}\right)$, $1_{\omega_{2}}(f)$ is defined to be the zero-extension of f over $\left.\Omega\right) ; 1_{\omega_{1}}^{*}$ stands for the adjoint operator of $1_{\omega_{1}} ; \mathcal{F}_{\gamma}$ is a linear and bounded operator from $L^{2}\left(\omega_{1}\right)$ to $L^{2}\left(\omega_{2}\right)$. The operator \mathcal{F}_{γ} is what we will build up. The evolution distributed system (1.1) is well-posed and can be understood as the coupling of a sequence of heat equations:

$$
y(t):=\left\lvert\, \begin{array}{ll}
y^{0}(t), & \text { if } t \in[0, T) \\
y^{n}(t), & \text { if } t \in[n T,(n+1) T)
\end{array}\right.
$$

for any $n \in \mathbb{N}$, where

$$
\begin{cases}\partial_{t} y^{0}-\Delta y^{0}+V y^{0}=0, & \text { in } \Omega \times(0, T), \\ y^{0}=0, & \text { on } \partial \Omega \times(0, T) \\ y^{0}(0)=y(0) \in L^{2}(\Omega), & \end{cases}
$$

and

$$
\begin{cases}\partial_{t} y^{n}-\Delta y^{n}+V y^{n}=0, & \text { in } \Omega \times(n T,(n+1) T), \\ y^{n}=0, & \text { on } \partial \Omega \times(n T,(n+1) T), \\ y^{n}(n T)=y^{n-1}(n T)+1_{\omega_{2}} \mathcal{F}_{\gamma}\left(1_{\omega_{1}}^{*} y^{n-1}\left(\left(n-\frac{1}{2}\right) T\right)\right) \in L^{2}(\Omega)\end{cases}
$$

Throughout this paper, we denote by $\|\cdot\|$ and $\langle\cdot, \cdot\rangle$ the norm and the inner product of $L^{2}(\Omega)$ respectively. The notation $\|\cdot\|_{\omega_{1}}$ and $\langle\cdot, \cdot \cdot\rangle_{\omega_{1}}$ will mean the norm and the inner product of $L^{2}\left(\omega_{1}\right)$

https://daneshyari.com/en/article/5773975

Download Persian Version:

https://daneshyari.com/article/5773975

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: kim_dang_phung @yahoo.fr (K.D. Phung), wanggs62@yeah.net (G. Wang), yashanxu@fudan.edu.cn (Y. Xu).
 ${ }^{1}$ The author was partially supported by the National Natural Science Foundation of China under grant 11571264.
 2 The author was partially supported by the National Natural Science Foundation of China under grant 11471080, 11371095, 11631004.
 http://dx.doi.org/10.1016/j.jde.2017.06.008
 0022-0396/© 2017 Elsevier Inc. All rights reserved.

