Symmetry-breaking bifurcation for the one-dimensional Liouville type equation

Satoshi Tanaka ${ }^{1}$
Department of Applied Mathematics, Faculty of Science, Okayama University of Science, Ridaichou 1-1, Okayama 700-0005, Japan
Received 26 February 2016; revised 22 March 2017
Dedicated to Professor Eiji Yanagida on the occasion of his sixtieth birthday

Abstract

The two-point boundary value problem for the one-dimensional Liouville type equation

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\lambda|x|^{l} e^{u}=0, \quad x \in(-1,1), \\
u(-1)=u(1)=0
\end{array}\right.
$$

is considered, where $\lambda>0$ and $l>0$. In this paper, a symmetry-breaking result is obtained by using the Morse index. The problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\lambda|x|^{l}(u+1)^{p}=0, \quad x \in(-1,1), \\
u(-1)=u(1)=0
\end{array}\right.
$$

is also considered, where $\lambda>0, l>0, p>1$ and $(p-1) l>4$.
© 2017 Elsevier Inc. All rights reserved.

MSC: 35B32; 35J25; 35J60; 34B18
Keywords: Symmetry-breaking bifurcation; Positive solution; One-dimensional Liouville type equation; Morse index; Korman solution

[^0]
1. Introduction

In this paper, we consider the two-point boundary value problem for the one-dimensional Liouville type equation

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\lambda|x|^{l} e^{u}=0, \quad x \in(-1,1) \tag{1.1}\\
u(-1)=u(1)=0
\end{array}\right.
$$

where $\lambda>0$ and $l>0$.
Jacobsen and Schmitt [7] presented the exact multiplicity result of radial solutions for the multi-dimensional problem

$$
\left\{\begin{array}{cl}
\Delta u+\lambda|x|^{l} e^{u}=0 & \text { in } B, \tag{1.2}\\
u=0 & \text { on } \partial B,
\end{array}\right.
$$

where $\lambda>0, l \geq 0, B:=\left\{x \in \mathbf{R}^{N}:|x|<1\right\}$ and $N \geq 1$. In the case $N=1$, problem (1.2) is reduced to (1.1). We note here that every solution of (1.2) is positive in B, by the strong maximum principle. Jacobsen and Schmitt [7] proved the following (i)-(iii):
(i) if $1 \leq N \leq 2$, then there exists $\lambda_{*}>0$ such that (1.2) has exactly two radial solutions for $0<\lambda<\lambda_{*}$, a unique radial solution for $\lambda=\lambda_{*}$ and no radial solution for $\lambda>\lambda_{*}$;
(ii) if $3 \leq N<10+4 l$, then (1.2) has infinitely many radial solutions when $\lambda=(l+2)(N-2)$ and a finite but large number of radial solutions when $|\lambda-(l+2)(N-2)|$ is sufficiently small;
(iii) if $N \geq 10+4 l$, then (1.2) has a unique radial solution for $0<\lambda<(l+2)(N-2)$ and no radial solution for $\lambda \geq(l+2)(N-2)$.

Recently, Korman [14] gave an alternative proof of (i)-(iii), and his method is very interesting and easy to understand it. Results (i)-(iii) were established by Liouville [16], Gel'fand [4], Joseph and Lundgren [8] for problem (1.2) with $l=0$, that is,

$$
\left\{\begin{array}{cl}
\Delta u+\lambda e^{u}=0 & \text { in } \Omega, \tag{1.3}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

when $\Omega=B$.
A celebrated theorem by Gidas, Ni and Nirenberg [5] shows that every positive solution of (1.3) is radially symmetric when $\Omega=B$. However, when Ω is an annulus $A:=\left\{x \in \mathbf{R}^{N}: a<\right.$ $|x|<b\}, a>0$, problem (1.3) may has non-radial solutions. Indeed, Nagasaki and Suzuki [18] found that large non-radial solutions of (1.3) when $N=2$ and $\Omega=A$. More precisely, for each sufficiently large $\mu>0$, there exist $\lambda>0$ and a non-radial solution u of (1.3) such that $\int_{A} e^{u} d x=\mu$ when $N=2$ and $\Omega=A$. Lin [15] showed that (1.3) has infinitely many symmetrybreaking bifurcation points when $N=2$ and $\Omega=A$. Dancer [2] proved that non-radial solution branches emanating from the symmetry-breaking bifurcation points found by Lin [15] are unbounded. Kan $[9,10]$ considered (1.3) with $\Omega=A$ and $N=2$ and investigated the structure of non-radial solutions bifurcating from radial solutions in the case where a is sufficiently small.

https://daneshyari.com/en/article/5774005

Download Persian Version:

https://daneshyari.com/article/5774005

Daneshyari.com

[^0]: E-mail address: tanaka@xmath.ous.ac.jp.
 ${ }^{1}$ This work was supported by KAKENHI (26400182).

