

Available online at www.sciencedirect.com

ScienceDirect

J. Differential Equations ••• (•••) •••-••

Journal of Differential Equations

www.elsevier.com/locate/jde

A classical Perron method for existence of smooth solutions to boundary value and obstacle problems for degenerate-elliptic operators via holomorphic maps

Paul M.N. Feehan a,b,*

Received 3 October 2013

Abstract

We prove existence of solutions to boundary value problems and obstacle problems for degenerateelliptic, linear, second-order partial differential operators with partial Dirichlet boundary conditions using a new version of the Perron method. The elliptic operators considered have a degeneracy along a portion of the domain boundary which is similar to the degeneracy of a model linear operator identified by Daskalopoulos and Hamilton [9] in their study of the porous medium equation or the degeneracy of the Heston operator [21] in mathematical finance. Existence of a solution to the partial Dirichlet problem on a half-ball, where the operator becomes degenerate on the flat boundary and a Dirichlet condition is only imposed on the spherical boundary, provides the key additional ingredient required for our Perron method. Surprisingly, proving existence of a solution to this partial Dirichlet problem with "mixed" boundary conditions on a half-ball is more challenging than one might expect. Due to the difficulty in developing a global Schauder estimate and due to compatibility conditions arising where the "degenerate" and "non-degenerate boundaries" touch, one cannot directly apply the continuity or approximate solution methods. However, in dimension two, there is a holomorphic map from the half-disk onto the infinite strip in the complex plane and one can extend this definition to higher dimensions to give a diffeomorphism from the half-ball onto the infinite "slab". The solution to the partial Dirichlet problem on the half-ball can thus be converted to a partial Dirichlet problem on the slab, albeit for an operator which now has exponentially growing coefficients. The

E-mail address: feehan@math.rutgers.edu.

http://dx.doi.org/10.1016/j.jde.2017.04.003

0022-0396/© 2017 Elsevier Inc. All rights reserved.

Please cite this article in press as: P.M.N. Feehan, A classical Perron method for existence of smooth solutions to boundary value and obstacle problems for degenerate-elliptic operators via holomorphic maps, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.04.003

a Department of Mathematics, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, United States

^b Department of Mathematics, Columbia University, New York, NY 10027, United States

^{*} The author was partially supported by NSF grant DMS-1237722, a visiting faculty appointment in the Department of Mathematics at Columbia University, and the Max Planck Institut für Mathematik in der Naturwissenschaft, Leipzig.

^{*} Correspondence to: Department of Mathematics, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, United States.

P.M.N. Feehan / J. Differential Equations ••• (••••) •••-••

required Schauder regularity theory and existence of a solution to the partial Dirichlet problem on the slab can nevertheless be obtained using previous work of the author and C. Pop [16]. Our Perron method relies on weak and strong maximum principles for degenerate-elliptic operators, concepts of continuous subsolutions and supersolutions for boundary value and obstacle problems for degenerate-elliptic operators, and maximum and comparison principle estimates previously developed by the author [13].

© 2017 Elsevier Inc. All rights reserved.

MSC: primary 35J70, 35J86, 49J40, 35R35, 35R45; secondary 49J20, 60J60

Keywords: Comparison principle; Degenerate elliptic differential operator; Non-negative characteristic form; Obstacle problem; Schauder regularity theory; Viscosity solution

Contents

2

1.	Introdi	action	2
	1.1.	Connections with previous research	4
	1.2.	Properties of the coefficients of the operator A	6
	1.3.	Summary of main results	7
	1.4.	Application to the elliptic Heston operator	1
	1.5.	Compatibility of mixed boundary conditions where the degenerate and non-degenerate	
		boundary portions touch	2
	1.6.	Extensions and future work	3
	1.7.	Outline and mathematical highlights	
	1.8.	Notation and conventions	
	1.9.	Acknowledgments	5
2.	Weak	and strong maximum principles for degenerate-elliptic operators	6
3.		der theory for degenerate-elliptic operators	
	3.1.	Daskalopoulos–Hamilton–Koch Hölder spaces	
	3.2.	A priori Schauder estimates and solution to the partial Dirichlet problem on a slab 2	
4.	Partial	Dirichlet problems on a half-ball and a slab	
	4.1.	A diffeomorphism from the unit half-ball to the slab	7
	4.2.	Existence of solutions to the partial Dirichlet boundary value problem on a half-ball 3	3
5.		methods for existence of solutions to degenerate-elliptic boundary value and obstacle	
		ms	7
	•	A Perron method for existence of solutions to a degenerate-elliptic boundary value problem 3	
		A Perron method for existence of solutions to a degenerate-elliptic obstacle problem 4	
Apper		Obstacle problems for strictly elliptic operators	
	ndix B.	Transformation of a model operator on the half-plane by the conformal map from a	
	half-di	sk to a strip	7
Refere	ences .		2

1. Introduction

Suppose $\mathscr{O} \subseteq \mathbb{H}$ is a domain (possibly unbounded) in the open upper half-space $\mathbb{H} := \mathbb{R}^{d-1} \times \mathbb{R}_+$, where $d \geq 2$ and $\mathbb{R}_+ := (0, \infty)$, and $\partial_1 \mathscr{O} := \partial \mathscr{O} \cap \mathbb{H}$ is the portion of the boundary $\partial \mathscr{O}$ of \mathscr{O} which lies in \mathbb{H} , and $\partial_0 \mathscr{O}$ is the interior of $\partial \mathbb{H} \cap \partial \mathscr{O}$, where $\partial \mathbb{H} = \mathbb{R}^{d-1} \times \{0\}$ is the boundary of

Please cite this article in press as: P.M.N. Feehan, A classical Perron method for existence of smooth solutions to boundary value and obstacle problems for degenerate-elliptic operators via holomorphic maps, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.04.003

Download English Version:

https://daneshyari.com/en/article/5774014

Download Persian Version:

https://daneshyari.com/article/5774014

<u>Daneshyari.com</u>