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Abstract

We prove existence of solutions to boundary value problems and obstacle problems for degenerate-
elliptic, linear, second-order partial differential operators with partial Dirichlet boundary conditions using
a new version of the Perron method. The elliptic operators considered have a degeneracy along a por-
tion of the domain boundary which is similar to the degeneracy of a model linear operator identified by
Daskalopoulos and Hamilton [9] in their study of the porous medium equation or the degeneracy of the
Heston operator [21] in mathematical finance. Existence of a solution to the partial Dirichlet problem on
a half-ball, where the operator becomes degenerate on the flat boundary and a Dirichlet condition is only
imposed on the spherical boundary, provides the key additional ingredient required for our Perron method.
Surprisingly, proving existence of a solution to this partial Dirichlet problem with “mixed” boundary condi-
tions on a half-ball is more challenging than one might expect. Due to the difficulty in developing a global
Schauder estimate and due to compatibility conditions arising where the “degenerate” and “non-degenerate
boundaries” touch, one cannot directly apply the continuity or approximate solution methods. However, in
dimension two, there is a holomorphic map from the half-disk onto the infinite strip in the complex plane
and one can extend this definition to higher dimensions to give a diffeomorphism from the half-ball onto the
infinite “slab”. The solution to the partial Dirichlet problem on the half-ball can thus be converted to a partial
Dirichlet problem on the slab, albeit for an operator which now has exponentially growing coefficients. The
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required Schauder regularity theory and existence of a solution to the partial Dirichlet problem on the slab
can nevertheless be obtained using previous work of the author and C. Pop [16]. Our Perron method relies
on weak and strong maximum principles for degenerate-elliptic operators, concepts of continuous subso-
lutions and supersolutions for boundary value and obstacle problems for degenerate-elliptic operators, and
maximum and comparison principle estimates previously developed by the author [13].
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1. Introduction

Suppose ¢ C H is a domain (possibly unbounded) in the open upper half-space H := R?~! x
R4, where d > 2 and R := (0, 00), and 9, & := d& NH is the portion of the boundary 9 & of &
which lies in H, and 9y is the interior of 9H N d &, where dH = R¢~! x {0} is the boundary of
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