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Abstract

A modification of the standard geophysical equatorial β-plane model equations, incorporating a 
gravitational-correction term in the tangent plane approximation, is derived. We present an exact solu-
tion satisfying the modified equations, whose form is explicit in the Lagrangian framework, and which 
represents three-dimensional, nonlinear oceanic wave-current interactions. It is rigorously established, by 
way of analytical and degree-theoretical considerations, that the solution is dynamically possible, in the 
sense that the mapping it prescribes from Lagrangian to Eulerian coordinates is a global diffeomorphism.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The modelling of geophysical fluid dynamics in the equatorial region is a highly complex 
subject of vast importance which has recently witnessed a number of interesting mathematical 
developments. Geophysical fluid dynamics is the study of fluid motion where the Earth’s rotation 
plays a significant role in the resulting dynamics, and accordingly Coriolis forces are incorpo-
rated into the governing Euler equation. The ensuing governing equations are applicable for a 
wide range of oceanic and atmospheric flows [11,14,27], thereby encapsulating the necessarily 

E-mail address: d.henry@ucc.ie.

http://dx.doi.org/10.1016/j.jde.2017.04.007
0022-0396/© 2017 Elsevier Inc. All rights reserved.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.jde.2017.04.007
http://www.elsevier.com/locate/jde
mailto:d.henry@ucc.ie
http://dx.doi.org/10.1016/j.jde.2017.04.007


JID:YJDEQ AID:8793 /FLA [m1+; v1.257; Prn:19/04/2017; 15:48] P.2 (1-13)

2 D. Henry / J. Differential Equations ••• (••••) •••–•••

high-level of mathematical sophistication required to model such a rich variety of phenomena. 
This level of complexity leads to an inherent mathematical intractability in the model equations, 
and in order to mitigate this one typically employs oceanographical considerations in order to 
derive simpler approximate models.

A classical example which is typically employed in oceanographic considerations is the 
β-plane approximation, whereby the earth’s curved surface is approximated (locally) by a tan-
gent plane. In the context of modelling equatorial flows this approach is applicable when we 
restrict our focus to regions of relatively small latitudinal variation (to the order of 2◦) about 
the equator; physically, the equator acts as a natural waveguide leading to equatorially-trapped 
zonally propagating waves which decay exponentially away from the equator, cf. [12]. We note 
that there has been an abundance of recent mathematical progress in deriving, and analysing, 
exact solutions to the β-plane equations modelling equatorial oceanic water waves [3–6,13,15,
17–21]—an interesting reflection on the relevance of exact solutions in physical oceanography 
may be found in [9].

However, we remark that while the β-plane approximation is regarded as reasonable for large-
scale oceanographical considerations, nevertheless from a mathematical modelling perspective 
it is lamentable that an appreciable level of mathematical detail and structure is lost from the 
model equations as a result of the ‘flattening out’ of the earth’s surface. A number of interesting 
mathematical approaches have been recently instigated which aim to retain some of this structure 
in modelling equatorial water waves, cf. [7,8,10,16]. The primary aim of this paper is to address 
this matter with a view to retaining artefacts of the geometry of the earth’s curvature by way of 
incorporating a gravitational-correction term into the standard β-tangent plane model, resulting 
in the modified governing equations (3).

Following the derivation in Section 2, we present a mapping (4) which we claim is an exact 
solution to the modified equations (3) representing three-dimensional, nonlinear wave-current in-
teractions; the zonally-periodic wavelike term is equatorially-trapped (exhibiting exponentially 
strong meridional decay) and propagates eastwards above a flow which accommodates a depth-
invariant mean current—either following or adverse—of any physically plausible (as defined by 
(5)) magnitude. In Section 3 we prove by direct computation that the mapping (4), explicit in 
terms of Lagrangian labelling variables, is compatible with the governing equations (3), and that 
it maps the Lagrangian labelling domain to a fluid domain bounded above by the free-surface in-
terface. We note that while the underlying current in the exact solution (4) assumes an apparently 
simple form in the Lagrangian framework, it greatly increases the complexity, both mathemati-
cally and physically, of the resulting fluid motion [13,18] in the Eulerian setting.

From an oceanographic perspective, large-scale currents and wave-current interactions play 
a major role in the geophysical dynamics of the equatorial region [7,8,11,12,22]. Aside from 
being physical important [2,25], the consideration of underlying currents, and wave-current in-
teractions, is a compelling subject in its own right from a purely mathematical viewpoint. The 
robustness of the modified governing equations in admitting such a general range of underlying 
currents in our exact solution is attributable precisely to the gravitational-correction terms, and 
contrasts strongly with the situation in [15] where the range of admissible adverse currents is 
greatly restricted.

We complete our analysis in Section 4 by employing analytical considerations to establish that 
(4) defines a local diffeomorphism from the Lagrangian labelling domain to the fluid domain, and 
that this mapping is globally injective. Further degree-theoretical considerations then enable us 
to prove that (4) is, in fact, a global diffeomorphism: these deliberations establish rigorously that 
the (highly physically-complex!) motion prescribed by the mapping (4), which represents three-
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