

Available online at www.sciencedirect.com

[J. Differential Equations 262 \(2017\) 3317–3342](http://dx.doi.org/10.1016/j.jde.2016.11.030)

Journal of **Differential** Equations

www.elsevier.com/locate/jde

Dynamics of wave equations with moving boundary

To Fu Ma ^{a,∗}, Pedro Marín-Rubio ^b, Christian Manuel Surco Chuño ^c

^a *Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil* ^b *Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160,*

41080 Sevilla, Spain

^c *Câmpus de Curitiba, Universidade Federal Tecnológica do Paraná, 80230-901 Curitiba, PR, Brazil*

Received 9 February 2016; revised 29 September 2016

Available online 6 December 2016

Abstract

This paper is concerned with long-time dynamics of weakly damped semilinear wave equations defined on domains with moving boundary. Since the boundary is a function of the time variable the problem is intrinsically non-autonomous. Under the hypothesis that the lateral boundary is time-like, the solution operator of the problem generates an evolution process $U(t, \tau)$: $X_{\tau} \to X_t$, where X_t are time-dependent Sobolev spaces. Then, by assuming the domains are expanding, we establish the existence of minimal pullback attractors with respect to a universe of tempered sets defined by the forcing terms. Our assumptions allow nonlinear perturbations with critical growth and unbounded time-dependent external forces. © 2016 Elsevier Inc. All rights reserved.

MSC: 35R37; 35L70; 35B41

Keywords: Wave equation; Non-cylindrical domain; Non-autonomous system; Pullback attractor; Critical exponent

1. Introduction

This paper is concerned with long-time dynamics of semilinear wave equations defined on moving boundary domains. The problem involves a space–time domain

Corresponding author.

<http://dx.doi.org/10.1016/j.jde.2016.11.030> 0022-0396/© 2016 Elsevier Inc. All rights reserved.

E-mail addresses: matofu@icmc.usp.br (T.F. Ma), pmr@us.es (P. Marín-Rubio), christianchuno@utfpr.edu.br (C.M. Surco Chuño).

$$
Q_{\tau} \subset \mathbb{R}^3 \times (\tau, \infty), \quad \tau \in \mathbb{R},
$$

such that its intersections with hyperplanes $\{(x, s) \in \mathbb{R}^4 \mid s = t\}$ are bounded domains $\Omega_t \subset \mathbb{R}^3$ with boundary $\Gamma_t = \partial \Omega_t$. Then Q_{τ} and its lateral boundary Σ_{τ} can be defined as

$$
Q_{\tau} = \bigcup_{t > \tau} \{ \Omega_t \times \{t\} \} \quad \text{and} \quad \Sigma_{\tau} = \bigcup_{t > \tau} \{ \Gamma_t \times \{t\} \},
$$

respectively. Since Ω_t varies with respect to *t* we see that Q_τ is, in general, non-cylindrical along the *t*-axis. We consider the mixed problem

$$
\partial_t^2 u - \Delta u + \partial_t u + f(u) = g \text{ in } Q_\tau,
$$
\n(1.1)

$$
u = 0 \text{ on } \Sigma_{\tau},\tag{1.2}
$$

$$
u(x,\tau) = u_\tau^0(x), \quad \partial_t u(x,t)|_{t=\tau} = u_\tau^1(x), \quad x \in \Omega_\tau,
$$
\n(1.3)

where *f* and $g = g(x, t)$ are forcing terms and u_τ^0 and u_τ^1 are initial data. Sometimes we write simply *Q* instead of Q_7 .

This kind of wave equation was studied by several authors with $\tau = 0$. Indeed, the existence of a global solution was proved by Cooper and Bardos [\[10\]](#page--1-0) under the assumption that there exists a one-to-one mapping transforming *Q* onto an expanding or contracting domain *Q*∗. One says that a domain *Q* is expanding if $\Omega_s \subset \Omega_t$ whenever $s \le t$ and contracting in the reverse case. However, uniqueness of solutions is only known under the assumption that the exterior normal to Σ does not belong to the corresponding light cone, as proved in [\[10\].](#page--1-0) Writing the exterior normal as $v = (v_x, v_t)$ this implies that $|v_t| < |v_x|$ on Σ , which defines Σ as time-like. Roughly speaking, under suitable assumptions on f and g , problem (1.1)–(1.3) has a unique global solution if Q is smooth and its lateral boundary Σ is time-like.

On the other hand, the study of long-time dynamics is concerned with the behavior of the solutions as $t \to \infty$. In this direction, it was proved by Bardos and Chen [\[2\]](#page--1-0) that the linear energy of the system increases when the domain *Q* is contracting and decreases when the domain is expanding. Therefore if we consider dissipative systems, it is natural to assume that *Q* is non-contracting. It is not clear whether a damping term can overcome the growth of energy produced by strictly contracting domains. The assumption that *Q* is expanding is used in the proof of an energy inequality (see [Lemma 2.3](#page--1-0) below).

Now, since the boundary of Ω_t is a function of time, it follows that evolution equations on moving boundary domains are intrinsically non-autonomous, even if the external force $g(x, t)$ = *g(x)* does not depend on *t*. In addition, given initial data (u_τ^0, u_τ^1) in $H_0^1(\Omega_\tau) \times L^2(\Omega_\tau)$, the (finite energy) solutions u of (1.1) – (1.3) satisfy

$$
u(t) \in H_0^1(\Omega_t)
$$
 and $\partial_t u(t) \in L^2(\Omega_t)$, $\forall t \ge \tau$,

where $u(t)$ denotes $u(\cdot, t)$. Therefore, the solution operator of (1.1) – (1.3) generates an evolution process

$$
U(t,\tau): X_{\tau} \to X_t, \quad t \geq \tau,
$$

where

$$
X_t = H_0^1(\Omega_t) \times L^2(\Omega_t).
$$

Download English Version:

<https://daneshyari.com/en/article/5774041>

Download Persian Version:

<https://daneshyari.com/article/5774041>

[Daneshyari.com](https://daneshyari.com)