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Abstract

We study the existence and nonexistence of nonzero solutions for the following class of quasilinear
Schrodinger equations:

—AU+V)u+ g[A(uz)]u —h@w), xeRV,

where xk > 0 is a parameter, V (x) is a continuous potential which is large at infinity and the nonlinearity &
can be asymptotically linear or superlinear at infinity. In order to prove our existence result we have applied
minimax techniques together with careful L°-estimates. Moreover, we prove a Pohozaev identity which
justifies that 2* = 2N /(N — 2) is the critical exponent for this class of problems and it is also used to show
nonexistence results.
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1. Introduction and main results

In this paper, we are concerned with the existence and nonexistence of nonzero solution for
quasilinear Schrodinger equations of type

—Au+V(x)u+§[A(u2)]u:h(u) in RV, (1.1)

where N >3, V:RY — R and /& : R — R are continuous functions and « is a real parameter.
Solutions of (1.1) are related to existence of standing wave solutions for the following modified
version of the nonlinear Schrodinger equation:

9
ia_f =AY + WY — (v Py + g [Ap(IWIz)] o (WP, (1.2)

where ¥ : RY x R — C, « is a real constant, W : RN — R is a given potential and  : R, — R,
o : R4 — R are appropriate functions. Quasilinear equations of the form (1.2) appear naturally
in mathematical physics and have been derived as models of several physical phenomena cor-
responding to various types of nonlinear terms p, see [27]. Here, we are interested in the case
p(s) = s, which was used, for instance, for the superfluid film equation in plasma physics by
Kurihara in [22]. When n(s) is a pure power, (1.2) also appears in nonlinear optics, e.g., oscil-
lating soliton instabilities during microwave and laser heating of plasma, see [20,28]. For more
details and physical applications involving this subject, we refer the readers to [9,12,21,23,24,27]
and references therein. Our main interest is in the existence of standing wave solutions, that is,
solutions of type

Y (x, 1) =exp(—i&Nu(x),

where £ € R and u > 0 is a real function. A simple computation shows that v satisfies (1.2) if
and only if the function u(x) solves the quasilinear equation (1.1), where V (x) := W(x) — £ is
the new potential and £ (u) := n(u®)u is the new nonlinear term.

Motivated by these physical aspects, equation (1.1) has attracted a lot of attention of many
researchers and some existence and multiplicity results have been obtained. The semilinear case
k = 0 has been studied extensively in recent years with a huge variety of hypotheses on the
potential V (x) and the nonlinearity 4 (¢), see for example [5,7,8,10,29,33] and references therein.
Compared to the semilinear case, the quasilinear one (k # 0) becomes much more complicated
due to the effects of the quasilinear and non-convex term A (u>)u. One of the main difficulties
of (1.1) is that there is no suitable space on which the energy functional is well defined and
belongs to C!-class, except for N = 1 (see [27]). Another feature of the quasilinear equation
(1.1), when k <O and h(u) = |u|l’_2u, is that the critical exponent is not 2* =2N /(N — 2), the
usual Sobolev exponent. Instead, p = 2.2* behaves like a critical exponent for (1.1) as observed
in the works [14,25] and proved in [2] for V (x) constant. To the best of our knowledge, the first
existence result involving variational methods was due to [27] for N = 1 or V radially symmetric
for high dimensions, by using a constrained minimization argument (see also [24] for the more
general case). After that, some ideas and approaches were developed to overcome the difficulties,
see [24,30] for a Nehari manifold argument. By using a change of variables (dual approach), the
authors in [26] reduced the quasilinear equation (1.1) to a semilinear one, and an Orlicz space
framework was used to prove the existence of a positive solution via minimax methods. The same
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