

Available online at www.sciencedirect.com

Journal of Differential Equations

J. Differential Equations 263 (2017) 3581-3610

www.elsevier.com/locate/jde

Schrödinger operators involving singular potentials and measure data

Augusto C. Ponce*, Nicolas Wilmet

Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium

> Received 7 December 2016 Available online 18 May 2017

Abstract

We study the existence of solutions of the Dirichlet problem for the Schrödinger operator with measure data

 $\begin{cases} -\Delta u + Vu = \mu & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$

We characterize the finite measures μ for which this problem has a solution for every nonnegative potential V in the Lebesgue space $L^p(\Omega)$ with $1 \le p \le \frac{N}{2}$. The full answer can be expressed in terms of the $W^{2,p}$ capacity for p > 1, and the $W^{1,2}$ (or Newtonian) capacity for p = 1. We then prove the existence of a solution of the problem above when V belongs to the real Hardy space $H^1(\Omega)$ and μ is diffuse with respect to the $W^{2,1}$ capacity.

© 2017 Elsevier Inc. All rights reserved.

MSC: primary 35J10, 35J15; secondary 31B15, 31B35

Keywords: Schrödinger operator; Capacity; Hardy space; Measure data

Corresponding author. *E-mail addresses:* Augusto.Ponce@uclouvain.be (A.C. Ponce), Nicolas.Wilmet@uclouvain.be (N. Wilmet).

http://dx.doi.org/10.1016/j.jde.2017.04.039 0022-0396/© 2017 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let $\Omega \subset \mathbb{R}^N$ be an open, bounded and smooth set in dimension $N \ge 2$, and let $V \in L^1(\Omega)$ be a nonnegative function. We address in this paper the question of existence of solutions of the linear Dirichlet problem with measure data

$$\begin{cases} -\Delta u + Vu = \mu & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$
(1.1)

The variational solution of this problem when $\mu \in L^2(\Omega)$ can be obtained by a straightforward minimization of the associated energy functional

$$E(v) = \frac{1}{2} \int_{\Omega} \left(|\nabla v|^2 + V v^2 \right) - \int_{\Omega} \mu v,$$

which is bounded from below in $W_0^{1,2}(\Omega)$ since V is nonnegative. Using as a test function in (1.1) a suitable approximation of sgn u, one deduces the absorption estimate

$$\|Vu\|_{L^{1}(\Omega)} \le \|\mu\|_{L^{1}(\Omega)}.$$
(1.2)

When $\mu \in L^1(\Omega)$, the functional *E* need not be bounded from below, but one can use an approximation argument with L^2 functions to find a solution of (1.1), based on the linearity of the equation and the absorption estimate above; see [11,19]. In this case, the solution $u \in L^1(\Omega)$ satisfies $Vu \in L^1(\Omega)$ and the functional identity:

$$\int_{\Omega} u \left(-\Delta \zeta + V \zeta \right) = \int_{\Omega} \zeta \mu,$$

for every $\zeta \in C^{\infty}(\overline{\Omega})$ with $\zeta = 0$ on $\partial\Omega$. In the sequel, we denote by $C_0^{\infty}(\overline{\Omega})$ the space of such test functions ζ . The right-hand side of this identity is well-defined even if μ is merely a finite Borel measure; in this case the integral is interpreted as integration of ζ with respect to μ . This is the notion of weak solution of the Dirichlet problem (1.1) which has been introduced by Littman, Stampacchia and Weinberger [22, Definition 5.1].

In contrast with the L^1 case, the existence of solutions of the Dirichlet problem (1.1) with measure data is more subtle. For example, in dimension $N \ge 3$, the equation

$$-\Delta u + \frac{u}{|x|^{\alpha}} = \delta_0 \quad \text{in } B_1,$$

where B_1 is the unit ball in \mathbb{R}^N centered at 0, has no solution in the sense of distributions when $\alpha \ge 2$. Heuristically, u(x) behaves like $\frac{1}{|x|^{N-2}}$, as the fundamental solution of the Laplacian in a neighborhood of 0, and this is incompatible with the requirement that $\frac{u}{|x|^{\alpha}} \in L^1_{loc}(B_1)$; see Proposition 9.1 below in the spirit of [6, Remark A.4]. On the contrary, for $\alpha < 2$, a solution does exist, and more generally Stampacchia [32, Théorème 9.1] proved that, for every nonnegative function $V \in L^p(\Omega)$ with $p > \frac{N}{2}$, the Dirichlet problem (1.1) has a solution for any finite measure μ .

Download English Version:

https://daneshyari.com/en/article/5774061

Download Persian Version:

https://daneshyari.com/article/5774061

Daneshyari.com