ARTICLE IN PRESS

ELSEVIER

Available online at www.sciencedirect.com

Journal of Differential Equations

YJDEQ:8548

J. Differential Equations ••• (••••) •••-•••

www.elsevier.com/locate/jde

An avoiding cones condition for the Poincaré–Birkhoff Theorem

Alessandro Fonda^{a,*}, Paolo Gidoni^b

^a Dipartimento di Matematica e Geoscienze, Università di Trieste, P.le Europa 1, I-34127 Trieste, Italy
^b SISSA – International School for Advanced Studies, Via Bonomea 265, I-34136 Trieste, Italy

Received 11 February 2016

Abstract

We provide a geometric assumption which unifies and generalizes the conditions proposed in [11,12], so to obtain a higher dimensional version of the Poincaré–Birkhoff fixed point Theorem for Poincaré maps of Hamiltonian systems.

© 2016 Elsevier Inc. All rights reserved.

MSC: 34C25; 37C27

Keywords: Poincaré-Birkhoff Theorem; Avoiding cones condition; Hamiltonian systems; Periodic solutions

1. Introduction and main result

The seminal work of Henri Poincaré [21] gave rise to a huge amount of research, with the aim of better understanding the far-reaching consequences of the so-called *Poincaré's last geometric Theorem* or *Poincaré–Birkhoff Theorem*. Since then, however, a genuine generalization to higher dimensions of this planar fixed point theorem has never been found. We refer to [1,16] for a classical introduction, and to [8,18] for recent reviews on this topic. Recently, however, the first author and Antonio J. Ureña proposed in [11,12] a higher dimensional version of the

Corresponding author. E-mail addresses: a.fonda@units.it (A. Fonda), pgidoni@sissa.it (P. Gidoni).

http://dx.doi.org/10.1016/j.jde.2016.10.002 0022-0396/© 2016 Elsevier Inc. All rights reserved.

Please cite this article in press as: A. Fonda, P. Gidoni, An avoiding cones conditionfor the Poincaré–Birkhoff Theorem, J. Differential Equations (2016), http://dx.doi.org/10.1016/j.jde.2016.10.002

ARTICLE IN PRESS

A. Fonda, P. Gidoni / J. Differential Equations ••• (••••) •••-•••

Poincaré–Birkhoff Theorem which applies to Poincaré maps of Hamiltonian systems. The aim of this paper is to unify and generalize the geometrical conditions proposed there.

We consider the Hamiltonian system

$$\dot{z} = J\nabla H(t, z), \tag{HS}$$

where $J = \begin{pmatrix} 0 & I_N \\ -I_N & 0 \end{pmatrix}$ denotes the standard $2N \times 2N$ symplectic matrix, and we assume the Hamiltonian function $H : \mathbb{R} \times \mathbb{R}^{2N} \to \mathbb{R}$ to be \mathcal{C}^{∞} -smooth, and *T*-periodic in its first variable *t*. (Actually, such a regularity assumption can be considerably weakened, as will be discussed below.) We denote by $\nabla H(t, z)$ the gradient with respect to the variable *z*.

For every $\zeta \in \mathbb{R}^{2N}$, we denote by $\mathcal{Z}(\cdot, \zeta)$ the unique solution of (HS) satisfying $\mathcal{Z}(0, \zeta) = \zeta$. We assume that these solutions can be continued to the whole time interval [0, T], so that the Poincaré map $\mathcal{P} \colon \mathbb{R}^{2N} \to \mathbb{R}^{2N}$ is well defined, by setting

$$\mathcal{P}(\zeta) = \mathcal{Z}(T,\zeta)\,,$$

and it is a diffeomorphism. The fixed points of \mathcal{P} are associated with the *T*-periodic solutions of (HS).

For $z \in \mathbb{R}^{2N}$, we use the notation z = (x, y), with $x = (x_1, \ldots, x_N) \in \mathbb{R}^N$ and $y = (y_1, \ldots, y_N) \in \mathbb{R}^N$, and we assume that H(t, x, y) is 2π -periodic in each of the variables x_1, \ldots, x_N . Under this setting, *T*-periodic solutions of (HS) appear in equivalence classes made of those solutions whose components $x_i(t)$ differ by an integer multiple of 2π . We say that two *T*-periodic solutions are *geometrically distinct* if they do not belong to the same equivalence class. The same will be said for two fixed points of \mathcal{P} .

We now describe our geometrical setting, by introducing a family of closed cones associated to a particularly structured vector field.

Let $F : \mathbb{R}^N \to \mathbb{R}^N$ be a \mathcal{C}^{∞} -smooth gradient function, i.e., there is a function $h : \mathbb{R}^N \to \mathbb{R}$ such that $F = \nabla h$. We define, for every $y \in \mathbb{R}^N$, the set $\mathcal{A}_F(y)$ as follows: a vector $v \in \mathbb{R}^N$ belongs to $\mathcal{A}_F(y)$ if and only if there exist a sequence $(y_n)_n$ of points in \mathbb{R}^N and a sequence $(\mu_n)_n$ of non-negative real numbers such that

$$y_n \to y$$
, and $\mu_n F(y_n) \to v$.

It can be easily seen that $\mathcal{A}_F(y)$ is a closed cone in \mathbb{R}^N .

Our main result is the following.

Theorem 1. Let $F = \nabla h : \mathbb{R}^N \to \mathbb{R}^N$ be a C^{∞} -smooth function for which there are two constants K > 0 and C > 0 and a regular symmetric $N \times N$ matrix \mathbb{S} such that

$$|F(y) - \mathbb{S}y| \le C, \quad \text{when } |y| \ge K, \tag{1}$$

and set $D := F^{-1}(0)$. Writing

$$\mathcal{P}(x, y) = (x + \vartheta(x, y), \rho(x, y)), \qquad (2)$$

suppose that

Please cite this article in press as: A. Fonda, P. Gidoni, An avoiding cones conditionfor the Poincaré–Birkhoff Theorem, J. Differential Equations (2016), http://dx.doi.org/10.1016/j.jde.2016.10.002

Download English Version:

https://daneshyari.com/en/article/5774075

Download Persian Version:

https://daneshyari.com/article/5774075

Daneshyari.com