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Abstract

Using geometric singular perturbation theory, including the family blow-up as one of the main tech-
niques, we prove that the cyclicity, i.e. maximum number of limit cycles, in both regular and slow-fast 
unfoldings of nilpotent saddle-node singularity of codimension 4 is 2. The blow-up technique enables us 
to use the well known results for slow-fast codimension 1 and 2 Hopf bifurcations, slow-fast Bogdanov–
Takens bifurcations and slow-fast codimension 3 saddle and elliptic bifurcations.
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1. Introduction

In planar slow-fast systems Xε,μ a curve of singularities, called the critical curve, appears 
for ε = 0 where ε is a singular perturbation parameter and μ ∈ R

p , μ ∼ 0. The critical curve 
typically consists of normally hyperbolic singularities (the linearized vector field at a normally 
hyperbolic singularity has one zero eigenvalue with corresponding eigenvector tangent to the 
critical curve) and one contact point (often called turning point). We assume the contact point is 
of nilpotent type, for μ = 0. It is shown in [12] that any smooth family of planar slow-fast vector 
fields Xε,μ, locally near the nilpotent contact point for (ε, μ) ∼ (0, 0), is smoothly equivalent 
(preserving (ε, μ)) to the following normal form:
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ẋ = y − f (x,μ)

ẏ = ε
(
g(x, ε,μ) + (

y − f (x,μ)
)
h(x, y, ε,μ)

) (1)

for smooth functions f , g and h and f (0, 0) = ∂xf (0, 0) = 0.

Remark 1. In this paper we focus on smooth families of vector fields (smooth stands for C∞-
smoothness).

In this paper, we assume the nilpotent contact point is of order two ( ∂2f

∂x2 (0, 0) �= 0). After 
a smooth coordinate change and a smooth rescaling of time (see [11]), the family (1) can be 
brought into the form {

ẋ = y

ẏ = −xy + εg̃(x, ε,μ) + εy2H(x,y, ε,μ)
(2)

where ̃g and H are smooth functions.
We call the order of vanishing of ̃g(x, 0, 0) at x = 0, which is ≥ 0, the singularity order at the 

contact point (x, y) = (0, 0) (see [12]). The determination of small-amplitude limit cycles (i.e. 
limit cycles in a fixed neighborhood of the origin (x, y) = (0, 0)) in planar slow-fast systems (2)
has recently been the subject of many investigations, and the main goal of this paper is to give 
a complete analysis of the small-amplitude limit cycles in (2) when the singularity order at the 
contact point is 4. When the contact point is a slow-fast jump point (i.e. the singularity order is 0), 
then it is easy to see that there are no limit cycles (see [15,26,32]). If the singularity order is 1, 
small-amplitude limit cycles may be generated by a (slow-fast) Hopf bifurcation as g̃(0, ε, μ)

varies through the origin. Small-amplitude limit cycles in a codimension 1 slow-fast Hopf case 
have been studied in [26] generalizing the Van der Pol system (see [15]). In [16], a slow-fast Hopf 
point of higher codimensions in Liénard setting (H ≡ 0 in (2)) has been dealt with. The main 
result in [16] gives finite upper bounds for the number of small-amplitude limit cycles in analytic 
families or in smooth families with finite codimension. In a general (“non-Liénard”) setting, a 
codimension 2 slow-fast Hopf point, in the presence of center, has been treated in [25]. The 
maximum number of small-amplitude limit cycles in this case is shown to be 2 (we refer to this 
paper for more details). When the singularity order at the contact point in (2) is 2, we deal with 
a slow-fast unfolding of a Bogdanov–Takens point, and it is shown that from this point, at most 
one limit cycle may perturb (see [10]). This case was easier to treat due to the presence of the 
symmetry-breaking quadratic term αx2 (α �= 0) in g̃. When the singularity order at the contact 
point is 3, the family (2) is called the slow-fast unfolding of a saddle singularity of codimension 
3 (+) or the slow-fast unfolding of an elliptic singularity of codimension 3 (–), depending on 
the sign in front of the cubic term in g̃ (see [23]). In analogy with the results for the slow-fast 
Hopf point, the number of small-amplitude limit cycles in this codimension 3 case depends on 
the higher order terms in ̃g, and, in the presence of the quartic term αx4 (α �= 0) in ̃g, it is shown 
that the maximum number of limit cycles of both the slow-fast saddle point of codimension 3 
and the slow-fast elliptic point of codimension 3 is 2. This cyclicity result follows from [23–25]. 
The cases with the singularity order at the contact point ≥ 4 have not yet been studied and, as 
mentioned above, in this paper we investigate the small-amplitude limit cycle phenomenon in 
the slow-fast codimension 4 case. The reason we study this case is twofold. On one hand, the 
presence of the quartic term eliminates possibility of symmetric behavior of (2) and therefore 
simplifies our study, to some extent. On the other hand, we treat the codimension 4 case using a 
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