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Abstract

We study the hydrodynamics of active liquid crystals in the Beris–Edwards hydrodynamic framework 
with the Landau–de Gennes Q-tensor order parameter to describe liquid crystalline ordering. The existence 
of global weak solutions in two and three spatial dimensions is established. In the two-dimensional case, 
by the Littlewood–Paley decomposition, the higher regularity of the weak solutions and the weak-strong 
uniqueness are also obtained.
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1. Introduction

Liquid crystals are classical examples of mesophases that are intermediate between solids 
and liquids (cf. [10]). They often combine physical properties of both liquids and solids, and 
in general liquid crystals can be divided into thermotropic, lyotropic, and metallotropic phases, 
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according to their different optical properties. Nematic liquid crystals are one of the most com-
mon liquid crystalline phases; nematics are complex liquids with a certain degree of long-range 
orientational order. That is, the constituent molecules are typically rod-like or elongated, and 
these elongated molecules flow about freely as in a conventional liquid but, whilst flowing, they 
tend to align along certain distinguished directions (cf. [10,50]).

There are several competing mathematical theories for nematic liquid crystals in the litera-
ture, such as the Doi–Onsager theory proposed by Doi [11] in 1986 and Onsager [38] in 1949, the 
Oseen–Frank theory proposed by Oseen [39] in 1933 and Frank [16] in 1958, the Ericksen–Leslie 
theory proposed by Ericksen [13] in 1961 and Leslie [27] in 1968, and the Landau–de Gennes 
theory proposed by Gennes [17] in 1995. The first one is a molecular kinetic theory, and the 
remaining three are continuum macroscopic theories. These theories can be derived or related to 
each other, under some assumptions. For instance, Kuzzu–Doi [26] and E–Zhang [12] formally 
derived the Ericksen–Leslie equation from the Doi–Onsager equations by taking small Deborah 
number limit. Wang–Zhang–Zhang [53] justified this formal derivation before the first singular 
time of the Ericksen–Leslie equations. Wang–Zhang–Zhang [54] presented a rigorous deriva-
tion of the Ericksen–Leslie equations from the Beris–Edwards model in the Landau–de Gennes 
framework. Ball–Majumdar [3] and Ball–Zarnescu [4] studied the differences and the overlap 
between the Oseen–Frank theory and the Landau–de Gennes theory. See [28–31] for further 
discussions.

Active hydrodynamics describe fluids with active constituent particles that have collective 
motion and are constantly maintained out of equilibrium by internal energy sources, rather than 
by the external forces applied to the system. In particular, when the particles have elongated 
shapes, usually the collective motion induces the particles to demonstrate orientational ordering 
at high concentration. Thus, there are natural analogies with nematic liquid crystals. Active hy-
drodynamics have wide applications and have attracted much attention in recent decades. For 
example, many biophysical systems are classified as active nematics, including microtubule bun-
dles [47], cytoskeletal filaments [25], actin filaments [6], dense suspensions of microswimmers 
[55], bacteria [9], catalytic motors [42], and even nonliving analogues such as monolayers of vi-
brated granular rods [32]. For more information and discussions, see [5,11,20,23,24,43,45] and 
the references therein. Active nematic systems are distinguished from their well-studied passive 
counterparts since the constituent particles are active; that is, it is the energy consumed and dis-
sipated by the active particles that drives the system out of equilibrium, rather than the external 
force applied at the boundary of the system, like a shear flow. Consequently, active dynamics are 
truly striking, and many novel effects have been observed in active systems, like the occurrence 
of giant density fluctuations [34,36,44], the spontaneous laminar flow [21,33,51], unconventional 
rheological properties [15,22,48], low Reynolds number turbulence [24,55], and very different 
spatial and temporal patterns compared to passive systems [8,18,34,35,46] arising from the in-
teraction of the orientational order and the flow.

In this paper, we use the Landau–de Gennes Q-tensor description that is one of the most com-
prehensive descriptions, which describes the nematic state by a symmetric traceless 3 ×3 matrix, 
the Q-tensor order parameter with five independent degrees of freedom if the spatial dimension 
is three. A nematic phase is said to be (i) isotropic if Q = 0, (ii) uniaxial if Q has a pair of de-
generate non-zero eigenvalues, and (iii) biaxial if Q has three distinct eigenvalues. In particular, 
a uniaxial phase has a single distinguished direction of nematic alignment, and a biaxial phase 
has a primary and secondary direction of preferred alignment. We remark that two-dimensional 
Q-tensors have been used to successfully model severely confined three-dimensional nematic 
systems that are effectively invariant in the third dimension.
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