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Abstract

In this paper, we study a class of nonlinear reaction-hyperbolic systems modeling the neuronal signal
transfer in neuroscience. This reaction-hyperbolic system can be regarded as n x n (n > 2) hyperbolic
system with relaxation. We first prove the existence of traveling wave by Gershgorin circle theorem and
mathematically describe the neuronal signal transport. Then for a special case n = 2, we show the traveling
wave is nonlinearly stable, and obtain the convergence rate simultaneously by a weighted estimate.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider a class of reaction-hyperbolic systems in one space dimension as
follows
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which model the axonal transport in neuroscience, see Reed and Blum [16]. Here u’ represents
the i-th subpopulations, the term A;u’. accounts for the transport of the i-th subpopulation with
constant velocities A; satisfying A1 < Ay < --- < A,. Each f; is a smooth function describing the
biochemical processes of the constituents. The small parameter € characterizes the fact that the
biochemical process is much faster than the transport one.

The axonal transport is important for the maintenance and functions of nerve cells. The system
(1.1) was introduced by Reed and Blum to model the axonal transport mathematically, see [2,
3,14-16]. It was observed in experiments that the neuronal signal can be transferred through
a jump of concentration of subpopulations, see [1,9]. This phenomenon can be explained in
mathematics by the wave-like solution of the system (1.1). It was also observed by numerical
simulations in [2,3,14-16] that these models exist wave-like solutions moving at a more or less
constant velocity both in linear and nonlinear case, which is consistent with the experimental
observation in neuroscience. However theoretically there is no traveling wave for the linear case,
see [17]. Instead an approximate traveling wave was derived in [17], see also [3,7,8]. To our best
knowledge, except the special case n = 2, there is no theoretical result on the traveling wave for
the nonlinear cases which are more important in neuroscience, that is, in the system (1.1) f; is
nonlinear. For other interesting works, see [5,11] and the references therein.

In this paper, we focus on the traveling wave to the system (1.1). We first show the existence of
traveling wave motivated by the kinetic theory for the Boltzmann equation. Precisely speaking,
we observe that the equilibrium equation of the system (1.1) as € — 0 is scalar conservation
law in which there naturally has a shock wave. Based on this, we can expect a traveling wave
exists for the system (1.1) with the same speed of the shock wave to the scalar conservation law,
determined by the Rankine—Hugoniot condition. Before formulating our main results, we need
the following assumption:

(A) The function f;(u’,u’*") is strictly decreasing with respect to u’ and strictly increasing

with respect to u' !, i.e. % <0and azﬁl > (. In addition f;(0,0) =0.

The assumption (A) means that the chemical reactions form a chain and u”" is made from
u"~!, which is made from " 2. Note that the system (1.1) can be rewritten as

el +rnudy=fw', u?),
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