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Abstract

The paper introduces a PDE model for the growth of a tree stem or a vine. The equations describe the 
elongation due to cell growth, and the response to gravity and to external obstacles. An additional term 
accounts for the tendency of a vine to curl around branches of other plants.

When obstacles are present, the model takes the form of a differential inclusion with state constraints. 
At each time t , a cone of admissible reactions is determined by the minimization of an elastic deforma-
tion energy. The main theorem shows that local solutions exist and can be prolonged globally in time, 
except when a specific “breakdown configuration” is reached. Approximate solutions are constructed by an 
operator-splitting technique. Some numerical simulations are provided at the end of the paper.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We consider a simple mathematical model describing how the stem of a plant grows, and 
how it reacts to external constraints, such as branches of other plants. At each time t the stem 
is described by a curve γ (t, ·) in 3-dimensional space. The model takes into account the linear 
elongation due to cell growth and the upward bending as a response to gravity. In the case of 
vines, an additional term accounts for the tendency to curl around branches of other plants.

From a theoretical perspective, the main challenge comes from the presence of external 
obstacles, resulting in a number of unilateral constraints. Ultimately, this yields a differential 
inclusion on a closed subset of H 2([0, T ]; R3). We remark that most of the literature on dif-
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ferential inclusions with constraints is concerned with the case where the cone of admissible 
reactions produced by the (possibly moving) obstacle is perpendicular to its boundary [3,4,6,7]. 
In Moreau’s “sweeping process”, this assumption plays an essential role in the proof of exis-
tence and continuous dependence of solutions. In our model, at a time when part of the stem 
touches the obstacle, the evolution is governed by the minimization of an instantaneous elastic 
deformation energy, subject to the external constraints. As a consequence, the cone of admissible 
velocities determined by the obstacle’s reaction can be very different from the normal cone. In 
certain “breakdown configurations”, as shown in Fig. 4, this cone of admissible reactions actually 
happens to be tangent.

Our main result, Theorem 1 in Section 3, establishes the local existence of solutions to the 
growth model with obstacles. These solutions can be extended globally in time, provided that 
a specific “breakdown configuration” is never reached. As already mentioned, since the cone of 
admissible reactions is not a normal cone, the uniqueness and continuous dependence of solutions 
is a difficult problem that requires a substantially different approach from [3,4,6,7]. A detailed 
analysis of this issue will appear in the forthcoming paper [2].

The remainder of this paper is organized as follows. Section 2 introduces the basic model 
and derives an evolution equation satisfied by the growing curve. If obstacles are present, this 
takes the form of a differential inclusion in the space H 2([0, T ] ; R

3). This is supplemented by 
unilateral constraints, requiring that at all times the curve γ (t, ·) remains outside a given set. In 
Section 3 we give a definition of solution and state the main existence theorem. Namely, solutions 
exist locally in time and can be prolonged up to the first time when a “breakdown configura-
tion” is reached. A precise definition of these “bad” configurations is given at (3.9)–(3.10) and 
illustrated in Fig. 3. In essence, this happens when the tip of the stem touches the obstacle per-
pendicularly, and all the portions of the stem that do not touch the obstacle are straight segments.

The existence of solutions is proved in Sections 4 and 5, constructing a sequence of approxi-
mations by an operator-splitting technique. Each time step involves:

• a regular evolution operator, modeling the linear growth and the bending in response to 
gravity (possibly including also the curling of vines around branches of other plants),

• a singular operator, accounting for the obstacle reaction.

Much of the analytical work is carried out in Section 4, where we introduce a “push-out” operator 
and derive some key a priori estimates. Section 5 completes the proof of the main theorem. This 
is based on a compactness argument, which yields a convergent subsequence of approximate 
solutions.

In Section 6 we briefly describe how our results can be extended to more general models, 
including the case where the elastic energies associated with twisting and bending of the stem 
come with different coefficients. Finally, Section 7 presents some numerical simulations, in the 
case of one or two obstacles, in two space dimensions. The code used for these simulations can 
be downloaded at [8].

2. The basic model

We assume that new cells are generated at the tip of the stem, then they grow in size. At time 
t ≥ 0, the length of the cells born during the time interval [s, s + ds] is measured by

d� = (1 − e−α(t−s)) ds , (2.1)
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