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Abstract

We derive monotonicity formulas and ε-regularity results for extrinsic triharmonic maps and triharmonic 
Lane–Emden equations. As an application, we prove partial regularity results for both types of equations in 
the supercritical regime.
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1. Introduction

Ever since Peter Price found his monotonicity formula for Yang–Mills fields [20], monotonic-
ity formulas are one of the most important tools for studying supercritical equations and systems. 
Since then, monotonicity formulas for stationary harmonic [23,9] and biharmonic maps [6], the 
Lane–Emden equation [10,19] and its biharmonic and fractional versions [8,7] were found. In [5], 
Colding discovered striking monotonicity formulas for the Green’s function on non-parabolic 
manifolds with non-negative Ricci curvature which were further investigated in [4].
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One of the main motivations of this article is to extend these known monotonicity formulas 
to equations of order six. We will then use these new monotonicity formulas to derive partial 
regularity results. Surprisingly, we only succeed in deriving a useful monotonicity formula for 
stationary extrinsic triharmonic maps if the dimension is less than 20. Similarly, for the stationary 
solutions of the triharmonic Lane–Emden equation we end up with a restriction on the range of 
exponents depending on the dimension.

Let N ⊂Rm be a compact embedded submanifold without boundary and let � ⊂Rn be open. 
We call a map u : � → N weakly extrinsic triharmonic map if u is a critical point of the extrinsic 
triharmonic energy

E(u) :=
∫
�

|∇�u|3dx (1.1)

on the target manifold, i.e., if for all φ ∈ C∞
c (�, Rm) we have

d

dτ
E(π(u + τφ))

∣∣∣∣
τ=0

= 0. (1.2)

Here, π denotes the nearest neighbor projection of an open neighborhood of N onto the manifold 
N and C∞

c denotes the space of smooth functions with compact support.
Riviere found examples of everywhere discontinuous weakly harmonic maps into S3 [21]. To 

get a satisfactory regularity results, one therefore has to restrict the class of solutions further. 
Usually one considers stationary harmonic maps, i.e. critical points of the Dirichlet energy

∫
�

|∇u|2dx,

for which also the inner variation of the energy vanishes. Analogously, we call a weakly extrinsic 
triharmonic map stationary if the inner variation of the triharmonic energy vanishes, i.e., if

d

dτ
E(u ◦ (id� + τφ)

∣∣∣∣
τ=0

= 0 (1.3)

for all φ ∈ C∞
c (�, Rn).

Following ideas from [6], we will show that for a stationary extrinsic triharmonic map the 
quantity

1

2
r6−n

∫
B1(0)

|∇�u|2dx + 3r5−n

∫
∂B1(0)

|�u|2dS + 4(n − 4)r3−n

∫
∂B1(0)

|∇u|2dS + DLOT

is monotonically decreasing if 4 ≤ n ≤ 20. Here, the term DLOT consists of special lower order 
terms and distributional derivatives thereof (cf. Corollary 3.8). This extends the formulas for 
harmonic maps [20] and biharmonic maps [6] to these equations of order six.

Combining this monotonicity formula with an ε-regularity result for weak extrinsic trihar-
monic maps into spheres (Proposition 4.3), we prove partial regularity for stationary extrinsic 
triharmonic maps into spheres.
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