Nonlocal problems in thin domains

Marcone C. Pereira ${ }^{\text {a }}$, Julio D. Rossi ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Dpto. de Matemática Aplicada, IME, Universidade de São Paulo, Rua do Matão 1010, São Paulo - SP, Brazil
${ }^{\text {b }}$ Dpto. de Matemáticas, FCEyN, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina

Received 14 May 2016; revised 3 January 2017

Abstract

In this paper we consider nonlocal problems in thin domains. First, we deal with a nonlocal Neumann problem, that is, we study the behavior of the solutions to $f(x)=\int_{\Omega_{1} \times \Omega_{2}} J_{\epsilon}(x-y)\left(u^{\epsilon}(y)-u^{\epsilon}(x)\right) d y$ with $J_{\epsilon}(z)=J\left(z_{1}, \epsilon z_{2}\right)$ and $\Omega=\Omega_{1} \times \Omega_{2} \subset \mathbb{R}^{N}=\mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}}$ a bounded domain. We find that there is a limit problem, that is, we show that $u^{\epsilon} \rightarrow u_{0}$ as $\epsilon \rightarrow 0$ in Ω and this limit function verifies $\int_{\Omega_{2}} f\left(x_{1}, x_{2}\right) d x_{2}=$ $\left|\Omega_{2}\right| \int_{\Omega_{1}} J\left(x_{1}-y_{1}, 0\right)\left(U_{0}\left(y_{1}\right)-U_{0}\left(x_{1}\right)\right) d y_{1}$, with $U_{0}\left(x_{1}\right)=\int_{\Omega_{2}} u_{0}\left(x_{1}, x_{2}\right) d x_{2}$. In addition, we deal with a double limit when we add to this model a rescale in the kernel with a parameter that controls the size of the support of J. We show that this double limit exhibits some interesting features.

We also study a nonlocal Dirichlet problem $f(x)=\int_{\mathbb{R}^{N}} J_{\epsilon}(x-y)\left(u^{\epsilon}(y)-u^{\epsilon}(x)\right) d y, x \in \Omega$, with $u^{\epsilon}(x) \equiv 0, x \in \mathbb{R}^{N} \backslash \Omega$, and deal with similar issues. In this case the limit as $\epsilon \rightarrow 0$ is $u_{0}=0$ and the double limit problem commutes and also gives $v \equiv 0$ at the end. © 2017 Elsevier Inc. All rights reserved.

MSC: 45A05; 45C05; 45M05
Keywords: Thin domains; Nonlocal equations; Neumann problem; Dirichlet problem

[^0]
1. Introduction

Our main goal in this paper is to study nonlocal problems with non-singular kernels in thin domains. We deal with Neumann or Dirichlet conditions.

The Neumann problem. We consider

$$
\begin{equation*}
f(x)=\int_{\Omega_{1} \times \Omega_{2}} J_{\epsilon}(x-y)\left(u^{\epsilon}(y)-u^{\epsilon}(x)\right) d y \tag{1.1}
\end{equation*}
$$

where

$$
J_{\epsilon}(z)=J\left(z_{1}, \epsilon z_{2}\right),
$$

$\epsilon>0$ is a parameter, and $\Omega=\Omega_{1} \times \Omega_{2} \subset \mathbb{R}^{N}=\mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}}$ is a bounded Lipschitz domain. We denote by $x=\left(x_{1}, x_{2}\right)$ a point in $\Omega_{1} \times \Omega_{2}$, that is, $x_{1} \in \Omega_{1}, x_{2} \in \Omega_{2}$.

Here, and along the whole paper, the function J satisfies the following hypotheses

$$
\begin{align*}
& J \in \mathcal{C}\left(\mathbb{R}^{N}, \mathbb{R}\right) \text { is non-negative with } J(0)>0, J(-x)=J(x) \text { for every } x \in \mathbb{R}^{N} \text {, and } \\
& \qquad \int_{\mathbb{R}^{N}} J(x) d x=1 . \tag{H}
\end{align*}
$$

On the other hand we only assume that $f \in L^{2}(\Omega)$.
It is worth mentioning that we are calling (1.1) as a nonlocal thin domain problem due to its equivalence with the equation

$$
\begin{equation*}
h_{\epsilon}\left(z_{1}, z_{2}\right)=\frac{1}{\epsilon^{N_{2}}} \int_{\Omega_{1} \times \epsilon \Omega_{2}} J(z-w)(v(w)-v(z)) d w \tag{1.2}
\end{equation*}
$$

with $h_{\epsilon}\left(z_{1}, z_{2}\right)=f\left(z_{1}, z_{2} / \epsilon\right)$. This equivalence between (1.2) and (1.1) is a direct consequence of the change of variable

$$
\Omega_{1} \times \Omega_{2} \ni\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, \epsilon x_{2}\right) \in \Omega_{1} \times \in \Omega_{2} .
$$

Furthermore, we can see that (1.2), and then (1.1), are nonlocal singular problems since the bounded domain $\Omega_{1} \times \epsilon \Omega_{2}$ degenerates to $\Omega_{1} \times\{0\}$ when the positive parameter ϵ goes to zero. We also are in agreement with references $[8,17,14]$ using the factor $1 / \epsilon^{N_{2}}$ in (1.2) to preserve the relative size of the open set $\Omega_{1} \times \epsilon \Omega_{2}$ for small ϵ (notice that in terms of the Lebesgue measure in \mathbb{R}^{N} we have that $\left.\epsilon^{-N_{2}}\left|\Omega_{1} \times \epsilon \Omega_{2}\right|=\left|\Omega_{1} \times \Omega_{2}\right|\right)$. The convenience of dealing with (1.1) is clear since its solutions u^{ϵ} are defined in the fixed domain $\Omega=\Omega_{1} \times \Omega_{2}$.

Solutions to (1.1) are understood in a weak sense, that is,

$$
\begin{array}{r}
\int_{\Omega_{1} \times \Omega_{2}} f(x) \varphi(x) d x=\int_{\Omega_{1} \times \Omega_{2}} \int_{\Omega_{1} \times \Omega_{2}} J_{\epsilon}(x-y)\left(u^{\epsilon}(y)-u^{\epsilon}(x)\right) d y \varphi(x) d x \\
=-\frac{1}{2} \int_{\Omega_{1} \times \Omega_{2}} \int_{\Omega_{1} \times \Omega_{2}} J_{\epsilon}(x-y)\left(u^{\epsilon}(y)-u^{\epsilon}(x)\right)(\varphi(y)-\varphi(x)) d y d x \tag{1.3}
\end{array}
$$

https://daneshyari.com/en/article/5774180

Download Persian Version:

https://daneshyari.com/article/5774180

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: marcone@ime.usp.br (M.C. Pereira), jrossi@dm.uba.ar (J.D. Rossi).
 URLs: http://www.ime.usp.br/~marcone (M.C. Pereira), http://mate.dm.uba.ar/~jrossi/ (J.D. Rossi).

