

Available online at www.sciencedirect.com

Journal of Differential Equations

YJDEQ:876

J. Differential Equations ••• (••••) •••-•••

www.elsevier.com/locate/jde

Nonlocal problems in thin domains

Marcone C. Pereira^a, Julio D. Rossi^{b,*}

^a Dpto. de Matemática Aplicada, IME, Universidade de São Paulo, Rua do Matão 1010, São Paulo – SP, Brazil
 ^b Dpto. de Matemáticas, FCEyN, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina

Received 14 May 2016; revised 3 January 2017

Abstract

In this paper we consider nonlocal problems in thin domains. First, we deal with a nonlocal Neumann problem, that is, we study the behavior of the solutions to $f(x) = \int_{\Omega_1 \times \Omega_2} J_{\epsilon}(x-y)(u^{\epsilon}(y) - u^{\epsilon}(x))dy$ with $J_{\epsilon}(z) = J(z_1, \epsilon z_2)$ and $\Omega = \Omega_1 \times \Omega_2 \subset \mathbb{R}^N = \mathbb{R}^{N_1} \times \mathbb{R}^{N_2}$ a bounded domain. We find that there is a limit problem, that is, we show that $u^{\epsilon} \to u_0$ as $\epsilon \to 0$ in Ω and this limit function verifies $\int_{\Omega_2} f(x_1, x_2) dx_2 = |\Omega_2| \int_{\Omega_1} J(x_1 - y_1, 0)(U_0(y_1) - U_0(x_1))dy_1$, with $U_0(x_1) = \int_{\Omega_2} u_0(x_1, x_2) dx_2$. In addition, we deal with a double limit when we add to this model a rescale in the kernel with a parameter that controls the size of the support of J. We show that this double limit exhibits some interesting features.

We also study a nonlocal Dirichlet problem $f(x) = \int_{\mathbb{R}^N} J_{\epsilon}(x - y)(u^{\epsilon}(y) - u^{\epsilon}(x)) dy$, $x \in \Omega$, with $u^{\epsilon}(x) \equiv 0$, $x \in \mathbb{R}^N \setminus \Omega$, and deal with similar issues. In this case the limit as $\epsilon \to 0$ is $u_0 = 0$ and the double limit problem commutes and also gives $v \equiv 0$ at the end. © 2017 Elsevier Inc. All rights reserved.

MSC: 45A05; 45C05; 45M05

Keywords: Thin domains; Nonlocal equations; Neumann problem; Dirichlet problem

* Corresponding author. E-mail addresses: marcone@ime.usp.br (M.C. Pereira), jrossi@dm.uba.ar (J.D. Rossi). URLs: http://www.ime.usp.br/~marcone (M.C. Pereira), http://mate.dm.uba.ar/~jrossi/ (J.D. Rossi).

http://dx.doi.org/10.1016/j.jde.2017.03.029

0022-0396/© 2017 Elsevier Inc. All rights reserved.

ARTICLE IN PRESS

M.C. Pereira, J.D. Rossi / J. Differential Equations ••• (••••) •••-•••

1. Introduction

Our main goal in this paper is to study nonlocal problems with non-singular kernels in thin domains. We deal with Neumann or Dirichlet conditions.

The Neumann problem. We consider

$$f(x) = \int_{\Omega_1 \times \Omega_2} J_{\epsilon}(x - y)(u^{\epsilon}(y) - u^{\epsilon}(x))dy$$
(1.1)

where

$$J_{\epsilon}(z) = J(z_1, \epsilon z_2),$$

 $\epsilon > 0$ is a parameter, and $\Omega = \Omega_1 \times \Omega_2 \subset \mathbb{R}^N = \mathbb{R}^{N_1} \times \mathbb{R}^{N_2}$ is a bounded Lipschitz domain. We denote by $x = (x_1, x_2)$ a point in $\Omega_1 \times \Omega_2$, that is, $x_1 \in \Omega_1, x_2 \in \Omega_2$.

Here, and along the whole paper, the function J satisfies the following hypotheses

$$J \in \mathcal{C}(\mathbb{R}^N, \mathbb{R})$$
 is non-negative with $J(0) > 0$, $J(-x) = J(x)$ for every $x \in \mathbb{R}^N$, and
$$\int_{\mathbb{R}^N} J(x) dx = 1.$$
 (H)

On the other hand we only assume that $f \in L^2(\Omega)$.

It is worth mentioning that we are calling (1.1) as a nonlocal thin domain problem due to its equivalence with the equation

$$h_{\epsilon}(z_1, z_2) = \frac{1}{\epsilon^{N_2}} \int_{\Omega_1 \times \epsilon \ \Omega_2} J(z - w)(v(w) - v(z)) \, dw \tag{1.2}$$

with $h_{\epsilon}(z_1, z_2) = f(z_1, z_2/\epsilon)$. This equivalence between (1.2) and (1.1) is a direct consequence of the change of variable

$$\Omega_1 \times \Omega_2 \ni (x_1, x_2) \mapsto (x_1, \epsilon x_2) \in \Omega_1 \times \epsilon \Omega_2.$$

Furthermore, we can see that (1.2), and then (1.1), are nonlocal singular problems since the bounded domain $\Omega_1 \times \epsilon \Omega_2$ degenerates to $\Omega_1 \times \{0\}$ when the positive parameter ϵ goes to zero. We also are in agreement with references [8,17,14] using the factor $1/\epsilon^{N_2}$ in (1.2) to preserve the relative size of the open set $\Omega_1 \times \epsilon \Omega_2$ for small ϵ (notice that in terms of the Lebesgue measure in \mathbb{R}^N we have that $\epsilon^{-N_2} |\Omega_1 \times \epsilon \Omega_2| = |\Omega_1 \times \Omega_2|$). The convenience of dealing with (1.1) is clear since its solutions u^{ϵ} are defined in the fixed domain $\Omega = \Omega_1 \times \Omega_2$.

Solutions to (1.1) are understood in a weak sense, that is,

$$\int_{\Omega_1 \times \Omega_2} f(x)\varphi(x) dx = \int_{\Omega_1 \times \Omega_2} \int_{\Omega_1 \times \Omega_2} J_{\epsilon}(x-y)(u^{\epsilon}(y) - u^{\epsilon}(x)) dy \varphi(x) dx$$

$$= -\frac{1}{2} \int_{\Omega_1 \times \Omega_2} \int_{\Omega_1 \times \Omega_2} J_{\epsilon}(x-y)(u^{\epsilon}(y) - u^{\epsilon}(x))(\varphi(y) - \varphi(x)) dy dx,$$
(1.3)

Please cite this article in press as: M.C. Pereira, J.D. Rossi, Nonlocal problems in thin domains, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.03.029

2

Download English Version:

https://daneshyari.com/en/article/5774180

Download Persian Version:

https://daneshyari.com/article/5774180

Daneshyari.com