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Abstract

We establish quantitative asymptotic behaviors for nonnegative solutions of the critical semilinear equa-

tion −�u = u
n+2
n−2 with isolated boundary singularities, where n ≥ 3 is the dimension.
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1. Introduction

The internal isolated singularity for positive solutions of the semilinear equation −�u = up

has been very well understood, where � is the Laplace operator, 1 < p ≤ n+2
n−2 is a parameter and 

n ≥ 3 is the dimension. See Lions [20] for 1 < p < n
n−2 , Gidas–Spruck [12] for n

n−2 < p < n+2
n−2 , 

Aviles [1] for p = n
n−2 , Caffarelli–Gidas–Spruck [8] for n

n−2 ≤ p ≤ n+2
n−2 and Korevaar–Mazzeo–

Pacard–Schoen [15] for p = n+2
n−2 . The Sobolev critical exponent p = n+2

n−2 case is of particular 
interest, because the equation connects to the Yamabe problem and the conformal invariance 
leads to a richer isolated singularity structure. See also Li [17] and Han–Li–Teixeira [13] for 
conformally invariant fully nonlinear elliptic equations.
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The Dirichlet boundary isolated singularity for the same equation has also been studied in 
many cases. Asymptotic behaviors of singular solutions have been established by Bidaut–Véron–
Vivier [5] for 1 < p < n+1

n−1 and Bidaut–Véron–Ponce–Véron [3,4] for n+1
n−1 ≤ p < n+2

n−2 . Existence 
of singular solutions vanishing on boundaries of bounded domains except finite points has been 
obtained by del Pino–Musso–Pacard [11] for p < n+2

n−2 . The exponent n+1
n−1 corresponding to n

n−2
for the interior singularity was discovered by Brézis–Turner [6]. Under a blow up rate assumption 
Bidaut–Véron–Ponce–Véron [3,4] obtain refined asymptotic behaviors for the supercritical case 
n+2
n−2 < p < n+1

n−3 . We refer to [3] and references therein for related results on boundary singularity.

This paper is concerned with the remaining critical case: p = n+2
n−2 . The conformal invariance 

again produces additional complexity and the boundary condition makes the asymptotic analysis 
of [8] and [15] fail. As said in Bidaut–Véron-Ponce–Véron [4], one can show

Proposition 1.1. Denote Rn+ = {x = (x′, xn) ∈ R
n : xn > 0}. Let u ∈ C2(Rn+) ∩ C(R̄n+ \ {0}) be 

a nonnegative solution of

{
−�u = n(n − 2)u

n+2
n−2 in R

n+,

u = 0 on ∂Rn+ \ {0}.
(1)

Suppose 0 is a non-removable singularity of u, then u depends only on |x′| and xn, and 
∂ru(r, xn) < 0 for all r = |x′| > 0.

Note that nothing about the behavior of u at infinity is assumed in Proposition 1.1.

Let u be a solution of (1) and define U(t, θ) := |x| n−2
2 u(|x| · θ) with t = − ln |x|. Then we 

have

∂2
t tU + �Sn−1U − (n − 2)2

4
U + n(n − 2)U

n+2
n−2 = 0 on R× S

n−1+ , (2)

U = 0 on R× ∂Sn−1+ , (3)

where Sn−1+ = {θ = (θ1, . . . , θn) ∈ S
n−1 : θn > 0}. By Proposition 1.1, U(t, θ) = U(t, θn). In con-

trast to the internal singularity studied by Caffarelli–Gidas–Spruck [8] and Korevaar–Mazzeo–
Pacard–Schoen [15], we lose ODE analysis to classify all solutions of equation (2)–(3). del Pino–
Musso–Pacard [11] conjectured that there exists a one-parameter family of periodic solutions of 
(2)–(3). Bidaut–Véron–Ponce-Véron [3,4] proved that there exists a unique t -independent solu-
tion. Existence of t -dependent solutions and a priori estimates are left open.

Let ψ be a C2 function in Rn−1 satisfying

ψ(0) = 0, ∇ψ(0) = 0.

Let QR = {x = (x′, xn) : xn > ψ(x′)} ∩ BR and �R = {x = (x′, xn) : xn = ψ(x′)} ∩ BR , where 
BR is the open ball center at 0 with radius R. We consider nonnegative solutions of

{
−�u = n(n − 2)u

n+2
n−2 in Q1,

u = 0 on �1 \ {0}.
(4)
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