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Abstract

We study the regularity of the free boundary in the obstacle for the p-Laplacian, min
{−�pu, u −ϕ

}= 0

in � ⊂R
n. Here, �pu = div

(|∇u|p−2∇u
)
, and p ∈ (1, 2) ∪ (2, ∞).

Near those free boundary points where ∇ϕ �= 0, the operator �p is uniformly elliptic and smooth, and 
hence the free boundary is well understood. However, when ∇ϕ = 0 then �p is singular or degenerate, and 
nothing was known about the regularity of the free boundary at those points.

Here we study the regularity of the free boundary where ∇ϕ = 0. On the one hand, for every p �= 2
we construct explicit global 2-homogeneous solutions to the p-Laplacian obstacle problem whose free 
boundaries have a corner at the origin. In particular, we show that the free boundary is in general not C1 at 
points where ∇ϕ = 0. On the other hand, under the “concavity” assumption |∇ϕ|2−p�pϕ < 0, we show 
the free boundary is countably (n − 1)-rectifiable and we prove a nondegeneracy property for u at all free 
boundary points.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we study the obstacle problem

min
{−�pu, u − ϕ

}= 0 in � ⊂R
n (1.1)

for the p-Laplacian operator

�pu = div
(|∇u|p−2∇u

)
, 1 < p < ∞.

The problem appears for example when considering minimizers of the constrained p-Dirichlet 
energy

inf

⎧⎨⎩
∫
�

|∇v|p : v ∈ W 1,p(�), v ≥ ϕ in �, v = g on ∂�

⎫⎬⎭ ,

where ϕ and g are given smooth functions and � is a bounded smooth domain.
The regularity of solutions to (1.1) was recently studied by Andersson, Lindgren, and 

Shahgholian in [1]. Their main result establishes that if ϕ ∈ C1,1 then

sup
Br(x0)

(u − ϕ) ≤ Cr2 for all r ∈ (0,1)

at any free boundary point x0 ∈ ∂{u > ϕ}. Thus, solutions u leave the obstacle ϕ in a C1,1 fashion 
at free boundary points x0.

Notice that, near any free boundary point x0 ∈ ∂{u > ϕ} at which ∇ϕ(x0) �= 0, the solution u
will satisfy ∇u �= 0 as well and hence the operator �pu is uniformly elliptic in a neighborhood 
of x0. Therefore, by classical results [2,3,8], the solution u is C1,1 near x0, and the structure and 
regularity of the free boundary is well understood.

Thus, the main challenge in problem (1.1) is to understand the regularity of solutions and free 
boundaries near those free boundary points x0 ∈ ∂{u > ϕ} at which ∇ϕ(x0) = 0. Our first main 
result is the following.

Theorem 1.1. Let p ∈ (1, 2) ∪(2, ∞), and let ϕ(x) = −|x|2 in R2. There exists a 2-homogeneous 
function u : R2 → R satisfying (1.1) in all of R2, and such that the set {u > ϕ} is a cone with 
angle

θ0 = 2π

(
1 −

√
p − 1

2p

)
�= π.

In particular, the free boundary has a corner at the origin.
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