Multiplicity results in the non-coercive case for an elliptic problem with critical growth in the gradient

Colette De Coster ${ }^{\text {a }}$, Louis Jeanjean ${ }^{\text {b, }, 1}$
${ }^{\text {a }}$ Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, Institut des Sciences et Techniques de Valenciennes, F-59313 Valenciennes Cedex 9, France
${ }^{\mathrm{b}}$ Laboratoire de mathématiques (UMR 6623), Univ. Bourgogne France-Comté 16, Route de Gray, 25030 Besançon Cedex, France

Received 13 July 2016

Abstract

We consider the boundary value problem $$
-\Delta u=\lambda c(x) u+\mu(x)|\nabla u|^{2}+h(x), \quad u \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)
$$

where $\Omega \subset \mathbb{R}^{N}, N \geq 3$ is a bounded domain with smooth boundary. It is assumed that c, h belong to $L^{p}(\Omega)$ for some $p>N$ with $c \nexists 0$ as well as $\mu \in L^{\infty}(\Omega)$ and $\mu \geq \mu_{1}>0$ for some $\mu_{1} \in \mathbb{R}$. It is known that when $\lambda \leq 0$, problem $\left(P_{\lambda}\right)$ has at most one solution. In this paper we study, under various assumptions, the structure of the set of solutions of $\left(P_{\lambda}\right)$ assuming that $\lambda>0$. Our study unveils the rich structure of this problem. We show, in particular, that what happen for $\lambda=0$ influences the set of solutions in all the half-space $] 0,+\infty\left[\times\left(H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)\right)\right.$. Most of our results are valid without assuming that h has a sign. If we require h to have a sign, we observe that the set of solutions differs completely for $h \ngtr 0$ and $h \supsetneqq 0$. We also show when h has a sign that solutions not having this sign may exists. Some uniqueness results of signed solutions are also derived. The paper ends with a list of open problems.
© 2017 Elsevier Inc. All rights reserved.

MSC: 35J25; 35J62

[^0]
1. Introduction

We consider the boundary value problem

$$
-\Delta u=\lambda c(x) u+\mu(x)|\nabla u|^{2}+h(x), \quad u \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega),
$$

under the assumption

$$
\left\{\begin{array}{c}
\Omega \subset \mathbb{R}^{N}, N \geq 3 \text { is a bounded domain with } \partial \Omega \text { of class } C^{1,1}, \tag{A}\\
c \text { and } h \text { belong to } L^{p}(\Omega) \text { for some } p>N \text { and satisfy } c \ngtr 0, \\
\mu \in L^{\infty}(\Omega) \text { satisfies } 0<\mu_{1} \leq \mu(x) \leq \mu_{2} .
\end{array}\right.
$$

Depending on the parameter $\lambda \in \mathbb{R}$ we study the existence and multiplicity of solutions of $\left(P_{\lambda}\right)$. By solutions we mean functions $u \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ satisfying

$$
\int_{\Omega} \nabla u \nabla v d x=\lambda \int_{\Omega} c(x) u v d x+\int_{\Omega} \mu(x)|\nabla u|^{2} v d x+\int_{\Omega} h(x) v d x
$$

for any $v \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$.
First observe that, by the change of variable $v=-u$, problem $\left(P_{\lambda}\right)$ reduces to

$$
-\Delta v=\lambda c(x) v-\mu(x)|\nabla v|^{2}-h(x), \quad v \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega) .
$$

Hence, since we make no assumptions on the sign of h, we actually also consider the case where $|\nabla u|^{2}$ has a negative coefficient.

The study of quasilinear elliptic equations with a gradient dependence up to the critical growth $|\nabla u|^{2}$ was essentially initiated by Boccardo, Murat and Puel in the 80 's and it has been an active field of research until now. Under the condition $\lambda c(x) \leq-\alpha_{0}<0$ a.e. in Ω for some $\alpha_{0}>0$, which is usually referred to as the coercive case, the existence of a unique solution of $\left(P_{\lambda}\right)$ is guaranteed by assumption (A). This is a special case of the results of $[8,9]$ for the existence and of $[6,7]$ for the uniqueness. Let us point out that the requirement to deal with bounded solutions in $\left(P_{\lambda}\right)$ is essential to the uniqueness results. Indeed if one admits more general solutions, the existence of infinitely many solutions is known in several cases, see for example [1,2].

The limit case where one just require that $\lambda c(x) \leq 0$ a.e. in Ω is more complex. There had been a lot of contributions [2,13,19,20] when $\lambda=0$ (or equivalently when $c \equiv 0$) but the general case where $\lambda c \leq 0$ may vanish only on some parts of Ω was left open until the paper [4]. It appears in [4] that under assumption (A) the existence of solutions is not guaranteed, additional conditions are necessary. When $\lambda=0$ this was already observed in [13]. By [4], the uniqueness itself holds as soon as $\lambda c(x) \leq 0$ a.e. in Ω. See also [5] for a related uniqueness result in a more general frame.

The case $\lambda c \supsetneqq 0$ remained unexplored until very recently. Following the paper [22] which consider a particular case, Jeanjean and Sirakov [18] study a problem directly connected to (P_{λ}).

[^1]
https://daneshyari.com/en/article/5774200

Download Persian Version:
https://daneshyari.com/article/5774200

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: Colette.DeCoster@univ-valenciennes.fr (C. De Coster), louis.jeanjean@univ-fcomte.fr (L. Jeanjean).
 ${ }^{1}$ L. Jeanjean is supported by the project NONLOCAL (ANR-14-CE25-0013), funded by the French National Research Agency (ANR).
 http://dx.doi.org/10.1016/j.jde.2017.01.022
 0022-0396/© 2017 Elsevier Inc. All rights reserved.

[^1]: Please cite this article in press as: C. De Coster, L. Jeanjean, Multiplicity results in the non-coercive case for an elliptic problem with critical growth in the gradient, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.01.022

