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Abstract

The purpose of this work is to study the 3D focusing inhomogeneous nonlinear Schrödinger equation

iut + �u + |x|−b|u|2u = 0,

where 0 < b < 1/2. Let Q be the ground state solution of −Q + �Q + |x|−b|Q|2Q = 0 and sc = (1 +
b)/2. We show that if the radial initial data u0 belongs to H 1(R3) and satisfies E(u0)scM(u0)1−sc <

E(Q)scM(Q)1−sc and ‖∇u0‖sc
L2‖u0‖1−sc

L2 < ‖∇Q‖sc
L2‖Q‖1−sc

L2 , then the corresponding solution is global 
and scatters in H 1(R3). Our proof is based in the ideas introduced by Kenig–Merle [1] in their study of the 
energy-critical NLS and Holmer–Roudenko [2] for the radial 3D cubic NLS.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider the Cauchy problem, also called the initial value problem (IVP), for 
the focusing inhomogeneous nonlinear Schrödinger (INLS) equation on R3, that is

{
i∂tu + �u + |x|−b|u|2u = 0, t ∈ R, x ∈ R

3,

u(0, x) = u0(x),
(1.1)

where u = u(t, x) is a complex-valued function in space-time R ×R
3 and 0 < b < 1/2.

Before reviewing some results about the Cauchy problem (1.1), let us recall the critical 
Sobolev index. For a fixed δ > 0, the rescaled function uδ(t, x) = δ

2−b
2 u(δ2t, δx) is solution 

of (1.1) if and only if u(t, x) is a solution. This scaling property gives rise to a scale-invariant 
norm. Indeed, computing the homogeneous Sobolev norm of uδ(0, x), we get

‖uδ(0, .)‖Ḣ s = δs− 3
2 + 2−b

2 ‖u0‖Ḣ s .

Thus, the scale invariant Sobolev space is Hsc(R3), where sc = 1+b
2 (the critical Sobolev index). 

Note that, the restriction 0 < b < 1/2 implies 0 < sc < 1 and therefore we are in the mass-
supercritical and energy-subcritical case. In addition, we recall that the INLS equation has the 
following conserved quantities

M[u0] = M[u(t)] =
∫
R3

|u(t, x)|2dx (1.2)

and

E[u0] = E[u(t)] = 1

2

∫
R3

|∇u(t, x)|2dx − 1

4

∥∥∥|x|−b|u|4
∥∥∥

L1
x

, (1.3)

which are Mass and Energy, respectively.
Next, we briefly review recent developments on the well-posedness theory for the general 

INLS equation

{
i∂tu + �u + |x|−b|u|αu = 0, x ∈R

N,

u(0, x) = u0(x).
(1.4)

Genoud and Stuart [3,4], using the abstract theory developed by Cazenave [5] and some sharp 
Gagliardo–Nirenberg inequalities, showed that (1.4) is well-posed in H 1(RN)

• locally if 0 < α < 2∗,
• globally for small initial condition if 4−2b

N
< α < 4−2b

N−2 ,

• globally for any initial condition if 0 < α < 4−2b
N

,
• globally if α = 4−2b

N
, assuming ‖u0‖L2 < ‖Q‖L2 ,
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