

Available online at www.sciencedirect.com

Journal of Differential Equations

J. Differential Equations 262 (2017) 4175-4231

www.elsevier.com/locate/jde

Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation

Luiz Gustavo Farah*, Carlos M. Guzmán

ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 702, 30161-970, Belo Horizonte, MG, Brazil

Received 27 October 2016; revised 5 January 2017

Available online 26 January 2017

Abstract

The purpose of this work is to study the 3D focusing inhomogeneous nonlinear Schrödinger equation

$$iu_t + \Delta u + |x|^{-b}|u|^2 u = 0,$$

where 0 < b < 1/2. Let Q be the ground state solution of $-Q + \Delta Q + |x|^{-b}|Q|^2 Q = 0$ and $s_c = (1 + b)/2$. We show that if the radial initial data u_0 belongs to $H^1(\mathbb{R}^3)$ and satisfies $E(u_0)^{s_c} M(u_0)^{1-s_c} < E(Q)^{s_c} M(Q)^{1-s_c}$ and $\|\nabla u_0\|_{L^2}^{s_c} \|u_0\|_{L^2}^{1-s_c} < \|\nabla Q\|_{L^2}^{s_c} \|Q\|_{L^2}^{1-s_c}$, then the corresponding solution is global and scatters in $H^1(\mathbb{R}^3)$. Our proof is based in the ideas introduced by Kenig–Merle [1] in their study of the energy-critical NLS and Holmer–Roudenko [2] for the radial 3D cubic NLS. © 2017 Elsevier Inc. All rights reserved.

MSC: 35Q55; 35P25; 35B40

Keywords: Inhomogeneous nonlinear Schrödinger equation; Cauchy problem; Global well-posedness; Scattering

Corresponding author. *E-mail addresses:* lgfarah@gmail.com (L.G. Farah), carlos.guz.j@gmail.com (C.M. Guzmán).

http://dx.doi.org/10.1016/j.jde.2017.01.013 0022-0396/© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the Cauchy problem, also called the initial value problem (IVP), for the focusing inhomogeneous nonlinear Schrödinger (INLS) equation on \mathbb{R}^3 , that is

$$\begin{cases} i \partial_t u + \Delta u + |x|^{-b} |u|^2 u = 0, & t \in \mathbb{R}, \ x \in \mathbb{R}^3, \\ u(0, x) = u_0(x), \end{cases}$$
(1.1)

where u = u(t, x) is a complex-valued function in space-time $\mathbb{R} \times \mathbb{R}^3$ and 0 < b < 1/2.

Before reviewing some results about the Cauchy problem (1.1), let us recall the critical Sobolev index. For a fixed $\delta > 0$, the rescaled function $u_{\delta}(t, x) = \delta^{\frac{2-b}{2}} u(\delta^2 t, \delta x)$ is solution of (1.1) if and only if u(t, x) is a solution. This scaling property gives rise to a scale-invariant norm. Indeed, computing the homogeneous Sobolev norm of $u_{\delta}(0, x)$, we get

$$||u_{\delta}(0,.)||_{\dot{H}^{s}} = \delta^{s-\frac{3}{2}+\frac{2-b}{2}} ||u_{0}||_{\dot{H}^{s}}.$$

Thus, the scale invariant Sobolev space is $H^{s_c}(\mathbb{R}^3)$, where $s_c = \frac{1+b}{2}$ (the critical Sobolev index). Note that, the restriction 0 < b < 1/2 implies $0 < s_c < 1$ and therefore we are in the masssupercritical and energy-subcritical case. In addition, we recall that the INLS equation has the following conserved quantities

$$M[u_0] = M[u(t)] = \int_{\mathbb{R}^3} |u(t, x)|^2 dx$$
(1.2)

and

$$E[u_0] = E[u(t)] = \frac{1}{2} \int_{\mathbb{R}^3} |\nabla u(t, x)|^2 dx - \frac{1}{4} \left\| |x|^{-b} |u|^4 \right\|_{L^1_x},$$
(1.3)

which are Mass and Energy, respectively.

Next, we briefly review recent developments on the well-posedness theory for the general INLS equation

$$\begin{cases} i \partial_t u + \Delta u + |x|^{-b} |u|^{\alpha} u = 0, & x \in \mathbb{R}^N, \\ u(0, x) = u_0(x). \end{cases}$$
(1.4)

Genoud and Stuart [3,4], using the abstract theory developed by Cazenave [5] and some sharp Gagliardo–Nirenberg inequalities, showed that (1.4) is well-posed in $H^1(\mathbb{R}^N)$

- locally if $0 < \alpha < 2^*$,
- globally for small initial condition if $\frac{4-2b}{N} < \alpha < \frac{4-2b}{N-2}$,
- globally for any initial condition if $0 < \alpha < \frac{4-2b}{N}$,
- globally if $\alpha = \frac{4-2b}{N}$, assuming $||u_0||_{L^2} < ||Q||_{L^2}$,

Download English Version:

https://daneshyari.com/en/article/5774248

Download Persian Version:

https://daneshyari.com/article/5774248

Daneshyari.com